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Abstract
The recent OpenSHMEM effort has generated renewed in-
terest in developing a portable, high-performance implemen-
tation of the SHMEM programming interface. One advan-
tage of SHMEM is the simplified one-sided communication
model, but the traditional UNIX shared memory model does
not support the single-copy semantics offered by SHMEM
for exchanging data between processes on the same proces-
sor or within the same memory coherency domain. In this
paper, we describe an initial implementation of the OpenSH-
MEM programming interface that uses operating system vir-
tual address space mapping capabilities to provide efficient
intra-node operations. We describe the details of the imple-
mentation for two different operating systems, Linux and
the Kitten lightweight kernel, and we use micro-benchmarks
to compare the performance of our implementation to the
SHMEM implementation available on a Cray XE6 platform.

1. Introduction
The recent OpenSHMEM effort [4] has generated renewed
interest in developing a portable, high-performance imple-
mentation of the SHMEM [6] Partitioned Global Address
Space (PGAS) library. An important part of facilitating the
use of OpenSHMEM on current systems is providing high-
performance for processes running on the same multi-core
processor or in the same memory coherency domain. Sandia
National Laboratories recently developed an implementation
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of OpenSHMEM for the latest-generation Portals network
programming interface [1], and we used this implementa-
tion as a basis for developing an implementation focused on
efficient intra-node operations.

The main issue with implementing OpenSHMEM or
any one-sided communication library is that the traditional
UNIX shared memory model does not fully support single-
copy semantics for exchanging data between processes.
Tradtional shared memory can be used to implement the
symmetric heap in OpenSHMEM, but is not able to sup-
port one-sided transfers for symmetric data objects outside
the symmetric heap. Similar to two-sided message passing,
there are multiple approaches that can be used to implement
operations between processes on the same node.

Intra-node OpenSHMEM operations can be implemented
using an area of memory that is shared among all of the pro-
cesses on a node. This is how most MPI libraries implement
intra-node message passing. For two-sided send-receive op-
erations, the sender copies data into the shared memory re-
gion, and the receive copies it out. The drawback of this ap-
proach for one-sided operations is that some asynchronous
progress agent must exist at the target, since the target does
not explicitly participate in the operation. The most straight-
forward progress agent would be a thread for each process
that recognizes incoming requests or data in the shared mem-
ory region and reacts to it. The major drawbacks of using a
thread per process are the overhead of consuming extra pro-
cessor cycles and the complexity of managing responsive-
ness.

Intra-node operations could also be implemented via the
network interface, just like off-node transfers. The network
interface could recognize on-node operations and perform
them directly through a memory-to-memory copy mecha-
nism. The major drawback of this approach is that all re-
quests are serialized through the network interface, which
creates a bottleneck for all on-node operations and poten-
tially interferes with off-node operations as well.

Finally, the operating system could assist in on-node one-
sided operations, either by performing the operations via a



kernel thread or by re-mapping address spaces appropriately.
In the former case, the operating system could be extended
to provide the support necessary to copy data between the
address spaces of the communicating processes. Two draw-
backs of using the operating system are the overhead of
making a system call to transfer data and serialization of re-
quests. Ideally a one-side put operation would have very low
latency, and operating system traps are generally expensive.
The alternative, which we explore in this paper, is to use a
mechanism where the operating system provides direct load-
/store access to the memory of another process using virtual
addressing support. Every process on the node maps the ad-
dress space of the other processes into its own address space
so that it can easily read and write the memory of the other
processes.

We have implemented this memory mapping capability in
a new lightweight kernel and have developed an implemen-
tation of OpenSHMEM to make use of it. We also show how
this implementation can work for a similar memory map-
ping capability provided for the Linux operating system. We
compare the performance of our implementation of Open-
SHMEM against the implementation of SHMEM provided
by Cray on their XE6 platform. The rest of this paper is orga-
nized as follows. The following section provides background
on the SHMEM PGAS library and discusses related work.
Section 3 describes the implementation of the virtual mem-
ory mapping capabilities of the two operating systems. We
present the details of the OpenSHMEM implementation in
Section 4, and Section 5 analyzes performance of the imple-
mentation for several micro-benchmarks. We summarize the
results of this paper and describe a plan for future activities
in Section 6.

2. Background
The SHMEM library was first available on the Cray T3 [14,
15] series of machines in the early 1990’s. It provided
lightweight one-sided peer communication, collective com-
munication, and synchronization operations. Implementa-
tions for other platforms and networks have been developed,
including the series of networks from Quadrics [12]. There
was also a previous effort to develop a general portable im-
plementation of SHMEM for clusters [11]. Currently, SGI
holds the copyright on the SHMEM programming inter-
face [16].

The SHMEM programming interface is an attractive al-
ternative to traditional two-sided message passing with mes-
sage selection capabilities because it eliminates the complex
matching operations required at the target of the operation
and avoids the implicit need to synchronize the movement
of data between the initiator and target. Because data move-
ment is one-sided, the initiator of a peer communication op-
eration (put or get) knows the destination of the data at the
target, which can eliminate the need for any intermediate
buffers. Unlike MPI two-sided message passing where the

receiver must determine where the data ends up by matching
the contents of the message and potentially buffer the mes-
sage until the receiver provides a matching buffer, SHMEM
semantics encourage and support moving data directly from
the initiator to the target without any intermediate buffering.
Eliminating the implicit synchronization between sender and
receiver supports applications that have highly unstructured
communication patterns. The value of such remote mem-
ory access (RMA) operations was recognized by the MPI
community, motivating the addition of RMA operations to
the MPI-2 [10] standard. The emergence of networks with
remote DMA capability, such as InfiniBand, have arguably
been influenced by the capabilities first provided by the one-
sided put and get operations first available in SHMEM.

3. Virtual Address Space Mapping
We recently demonstrated a simple address space map-
ping capability in the Catamount lightweight kernel called
SMARTMAP [3], which uses top-level page table entries of
a processor core to map the address space of all of the coop-
erating processes in the same parallel job on the same multi-
core processor. We demonstrated how this mechanism could
be used to implement single-copy MPI message passing and
efficient on-node MPI collective operations. We have imple-
mented this capability in our latest open-source lightweight
kernel, Kitten [13], and we describe that implementation
here. A Linux kernel module has also recently been released
that enables a similar capability, although it does so in a
manner typical of a virtual-memory-based UNIX operating
system. This capability was initially developed by SGI for
their Altix system to enable “cross-partition memory map-
ping” and is known as XPMEM [18]. We describe the details
of these two approaches below.

3.1 Kitten SMARTMAP
Kitten is an open-source compute node operating system de-
signed specifically for high-performance computing. It em-
ploys the same philosophy of previous lightweight kernels
from Sandia and the University of New Mexico. Kitten also
addresses several of the limitations of these previous oper-
ating systems. Kitten provides partial Linux binary compat-
ibility so that standard tool chains and systems libraries, in-
cluding the GNU standard C library, can be used. The result-
ing binary executable can be run on either Linux or Kitten.
Kitten currently targets the x86 64 architecture, but could
easily be ported to other architectures. The code leverages
Linux for bootstrap and initialization, but subsystems that
are critical for scalability and performance, such as schedul-
ing and memory management, have been replaced. Unlike
previous lightweight kernels that were export controlled,
Kitten has been released under version two of the GNU Pub-
lic License.

The SMARTMAP implementation in Kitten is essentially
identical to the previous implementation in Catamount. Each



process is assigned to a single core of a multi-core processor,
and one top-level page table entry is used to map the virtual
address space of that process. The other processes on the
node are mapped using the remaining entries in the top-
level page table. These duplicate mappings offset by the top-
level entry provide the ability to take a virtual address in the
address space of a process, set the proper bits high in the
address to get to the appropriate top-level page table entry,
and access that same virtual address in the address space of
another process running on a different core. Replicating the
top-level page table entry for all processes on all cores takes
less than twenty lines of code in Kitten. More details on the
SMARTMAP implementation in Catamount can be found
in [3].

3.2 Linux XPMEM
SGI developed a similar capability for mapping the virtual
address space of processes in their IRIX operating system.
IRIX provided a lightweight process called an sproc that
had separate data, heap, and stack segments like a process,
but sprocs were able to attach segments of other sprocs to
their own address space. These segments of other sprocs
were mapped at different virtual addresses in each sproc,
so a virtual address offset translation was needed to be able
to access the memory of other sprocs. This mechanism was
used to implement SHMEM and explore optimized MPI
communications [17].

SGI subsequently provided this capability in Linux using
a kernel module called XPMEM on their Altix platform. An
Altix running multiple OS images was identified as “par-
titioned” and the term “cross-partition” was used to refer
to functionality that spanned partitions. The “cross-partition
memory” (XPMEM) module allowed a process in one parti-
tion to identify portions of its address space that other pro-
cesses running in the same or different partition can map
into their own address spaces. The XPMEM kernel module
is approximately 2200 lines of source code.

In addition to a kernel module, there is a user-level li-
brary that provides access to the XPMEM capabilities. Our
OpenSHMEM implementation uses three of these functions.
The xpmem make() routine returns a unique handle that can
be used to identify the segment of the address space of a
process that it has made available and to which other pro-
cesses can attach. A process that obtains this handle can then
call xpmem get(), which returns a handle that can be used
to access the mapped segment from the other process. The
xpmem attach() routine then takes this handle and maps
the identified memory segment of the other process into the
calling process at a virtual address determined by the oper-
ating system.

4. Implementation
In this section, we describe the implementation of the vari-
ous operations in OpenSHMEM. For most of the operations,

s t a t i c i n l i n e
vo id ∗
r e m o t e a d d r e s s ( u n s i g n e d rank , c o n s t vo id ∗vaddr )
{

u i n t p t r t add r =( u i n t p t r t ) vaddr ;

add r |= ( ( u i n t p t r t ) ( r ank +1))<<39;

r e t u r n add r ;
}

Figure 1. Kitten code for converting a local address to a
remote address.

the implementation using SMARTMAP in Kitten and XP-
MEM in Linux is identical. They only differ in initialization
and how a remote virtual address is calculated.

4.1 Initialization
When an application calls the OpenSHMEM library initial-
ization function (start pes()) in the Kitten implementa-
tion, the library determines the number of processing el-
ements (PEs) participating in the job and the PE rank of
the calling process. Kitten provides this information by
using standard Linux system calls, namely getpid() and
sched getaffinity(). The lower sixteen bits of the pro-
cess identifier are used to represent the rank of the process,
and the non-zero bits in the CPU set returned from the pro-
cessor’s affinity mask represent the number of active pro-
cesses in the job.

Following this, the process allocates memory for the sym-
metric heap out of its normal heap. The size of the sym-
metric heap is 64 MB by default and can be overridden
by an environment variable. Kitten guarantees that this ad-
dress will be identical across all processes provided that all
processes call malloc() the same number of times with
the same arguments before initializing the OpenSHMEM li-
brary. Our implementation uses the dlmalloc library from
Doug Lea [8] to implement the allocation routines. We con-
figure dlmalloc to never use mmap() for allocation.

The function for converting an address in the address
space of the local process to an address that can be used
to read or write the same location in the address space of
another process is called remote address(). It takes an
address and a PE rank and returns an address. In Kitten, this
routine simply takes the input address and combines it with
a mask that sets the appropriate bits based on the destination
PE rank. This code is shown in Figure 1.

For the Linux implementation, we use the SLURM re-
source manger to launch the processes on a node. We
use the SLURM environment variables SLURM PROCID and
SLURM NPROCS for each process to determine the number of
processes in the job and its PE rank. We allocate the sym-
metric heap in the same manner as Kitten. We use the Linux
symbols data start and end to determine the starting ad-
dress and length of the data section. The xpmem make()



s t a t i c i n l i n e vo id ∗
r e m o t e a d d r e s s ( u n s i g n e d rank , c o n s t vo id ∗vaddr )
{

u i n t p t r t add r = ( u i n t p t r t ) vaddr ;
u i n t p t r t ba se ;
u i n t p t r t r b a s e ;
u i n t p t r t o f f s e t ;
u i n t p t r t r a d d r ;

i f ( ( ( c h a r ∗) add r > ( c h a r ∗) s h m e m i n t e r n a l d a t a b a s e )&&
( ( c h a r ∗) add r < ( c h a r ∗) s h m e m i n t e r n a l d a t a e n d ) ){

base = ( u i n t p t r t ) s h m e m i n t e r n a l d a t a b a s e ;
r b a s e = ( u i n t p t r t ) s h m e m i n t e r n a l d a t a r b a s e [ r ank ] ;

} e l s e

i f ( ( ( c h a r ∗) add r > ( c h a r ∗) s h m e m i n t e r n a l h e a p b a s e )&&
( ( c h a r ∗) add r < ( c h a r ∗) s h m e m i n t e r n a l h e a p e n d ) ){

base = ( u i n t p t r t ) s h m e m i n t e r n a l h e a p b a s e ;
r b a s e = ( u i n t p t r t ) s h m e m i n t e r n a l h e a p r b a s e [ r ank ] ;

}

o f f s e t = add r − base ;

r a d d r = r b a s e + o f f s e t ;

r e t u r n r a d d r ;
}

Figure 2. Linux XPMEM code for converting a local ad-
dress to a remote address.

routine will only accept regions that are aligned to the start
of a memory page, so we call getpagesize() and align
the starting addresses of the data section and symmetric
heap appropriately. Each process then calls xpmem make()

twice, once for the data section and once for the symmetric
heap, obtaining two segment ids. Every process then opens
a file in /tmp and writes its segment ids. Then each pro-
cess opens the files written by the other processes, and calls
xpmem get() to obtain a handle for each region in the other
process. Finally, the process calls xpmem attach() to map
those regions into its own address space. Each process ends
up with an array that contains two virtual address entries for
all other processes, one for the start of the data section and
one for the start of the symmetric heap.

The function for converting a symmetric address to a re-
mote address for XPMEM, shown in Figure 2, simply uses a
bounds check to determine whether the address is a data seg-
ment address or a symmetric heap address, and then calcu-
lates the offset from the beginning of the appropriate region.
It then uses this offset from the start of the corresponding
PE’s virtual address to determine the correct remote address.

4.2 Peer Communication
The block and strided put and get operations for the dif-
ferent supported types are all implemented using two inline
functions. The put routine converts the target of the put op-
eration on a remote PE to a remote address and then calls
memcpy() to move the data. The get operation does essen-

s t a t i c i n l i n e
i n t
s h m e m i n t e r n a l p u t ( vo id ∗ t a r g e t , c o n s t vo id ∗ sou rce ,

s i z e t l en , i n t pe )
{

vo id ∗ t a r g e t r = r e m o t e a d d r e s s ( pe , ( vo id ∗) t a r g e t ) ;

memcpy ( t a r g e t r , sou rce , l e n ) ;

r e t u r n 0 ;
}

s t a t i c i n l i n e
vo id
s h m e m i n t e r n a l g e t ( vo id ∗ t a r g e t , c o n s t vo id ∗ sou rce ,

s i z e t l en , i n t pe )
{

vo id ∗ s o u r c e r = r e m o t e a d d r e s s ( pe , ( vo id ∗) s o u r c e ) ;

memcpy ( t a r g e t , s o u r c e r , l e n ) ;

}

Figure 3. Inline functions for performing put and get oper-
ations.

tially the same thing, but copies from the remote address into
the local address. Code for these two operations is shown in
Figure 3. Since the put operation always copies the data into
the target buffer, there is no issue with ordering, and hence
shmem fence() is a no-op. The shmem quiet() routine re-
quires a memory store fence to ensure store operations are
visible to subsequent load operations on other cores.

4.3 Collective Communication
The various OpenSHMEM broadcast operations are all im-
plemented by the same algorithm. Each of the PEs in the
active set copy the contents of the root PE’s source buffer
into its target buffer.

The symmetric work array at the root of the broadcast
contains two flags, start and end, and a counter. When the
root of the broadcast enters the operation, it first initializes
the flags and the counter. It sets the start flag to a non-zero
value to signal the other PEs that the broadcast operation has
begun. The root then performs its local operation, copying
the source buffer into the target buffer. Once the local copy
is complete, the root waits for the other PEs in the active
set to increment the counter, indicating that all of them have
entered the broadcast and copied the root’s source buffer
into their target buffers. Once all PEs have incremented
the counter, the root re-initializes the start flag, resets the
counter, and sets the end flag to a non-zero value. The root
then waits for all PEs to increment the counter flag again
before exiting the broadcast.

Each non-root PE in the active set first converts the ad-
dress of its symmetric work array and its source address to
a remote addresses in the root PE’s address space. It then
blocks waiting for the start flag to become non-zero. Once
the flag is set, it copies the contents of the root PE’s source
buffer into its target buffer. When the copy is complete, it



atomically increments the counter, and then waits for the
root to set the end flag to a non-zero value. When this flag is
set, the PE atomically increments the counter again and exits
the broadcast operation.

This broadcast algorithm is similar to the algorithm used
for on-node MPI broadcasts using SMARTMAP [3]. How-
ever, the MPI broadcast is slightly less complex because it is
easier for an MPI implementation to keep track of the par-
ticular broadcast operation that is being performed. Since all
ranks in the same communicator must call the MPI broadcast
routine in the same order, each rank can keep a counter as-
sociated with the communicator to track the current round.
Because OpenSHMEM has no structure that represents an
active PE set, care must be taken to ensure that the root does
not re-enter a broadcast operation and re-initialize flags be-
fore non-root PEs have exited the previous barrier operation.
This extra synchronization is the reason that each PE must
increment the counter twice – once to indicate they have
copied the data from the root and once more to indicate that
they have left the operation. The root must ensure that it is
the last PE to leave the operation.

The algorithm for the reduction operations works simi-
larly to broadcast, but uses two counters, pe and done. When
the root enters the reduction, it copies the contents of the
source buffer into the target buffer. It then increments pe

with the appropriate PE stride value to let the next PE in the
active set make its contribution. The root then waits for all
PEs in the active set to increment the done flag.

The non-root PEs in the active set convert the address
of the symmetric work array and target array to remote
addresses in the root PE’s address space. Each non-root PE
then blocks waiting for the value of pe to become its PE
rank, at which point it performs the appropriate operation on
the target buffer using its source buffer. It then increments
pe with the appropriate PE stride value to let the next PE
go. Each PE then waits for the value of pe to be greater
than the size of the active set, indicating that all PEs have
made their contribution. At this point, all PEs then copy
the remote target buffer into their local target buffer and
atomically increment the done flag.

The collect algorithm for OpenSHMEM works nearly in
the same way as the reduction algorithm, but in addition to
keeping a counter that indicates which PE should go next,
the algorithm also keeps an offset counter so the non-root
PEs are able to keep track of the offset where their contribu-
tion must be copied. Since the fcollect routines have an iden-
tical length for all PEs, every PE can copy its contribution
into the target array once the operation has begun. Every PE
waits for the operation to start, copies its contribution, then
waits for all PEs to contribute. Each PE then copies the en-
tire result, atomically increments a counter indicating it has
completed the copy, and then atomically increments another
counter as it exits the function.

4.4 Atomic Operations
The OpenSHMEM atomic operations are implemented us-
ing x86-64 assembly instructions to ensure atomicity, since
all of these operations are being performed on shared
memory. The shmem * add operations use the lock assem-
bly instruction (LOCK) followed by an add instruction.
The shmem * fadd operations use the lock instruction fol-
lowed by an exchange-and-add (XADD) operation. This
is also used to implement the shmem * finc operations.
The shmem * swap() and shmem * cswap operations use
the exchange (XCHG) and compare and exchange (CMPX-
CHG) instructions.

4.5 Synchronization
The shmem barrier and shmem barrier all routines are
implemented using an algorithm that is similar to the broad-
cast algorithm described above. The lowest PE number in
the active set, or PE zero in the case of the global barrier, is
chosen as the root. All PEs wait for the root to signal the start
of the barrier and atomically increment a counter to indicate
their participation in the barrier. They must also atomically
increment a counter on the way out of the barrier so that the
root is the last PE to leave the operation, allowing the root to
safely re-initialize flags for the next round.

The shmem * wait and shmem * wait until routines
spin waiting for the value to change. Care must be taken to
implement these functions using the volatile keyword to
ensure that compiler optimization does not remove the spin
loop.

4.6 Lock
OpenSHMEM provides a distributed lock using a single
word on each PE as the lock. The lock is FIFO ordered
and guarantees fairness. Our implementation uses a Mellor-
Crummey and Scott (MCS) lock [9] algorithm to implement
this distributed lock. MCS locks require two data elements
at each PE representing a signal field and a next pointer, and
a last pointer at PE 0, which is used to indicated whether or
not the lock is free. Our implementation uses a single sym-
metric 64-bit word on each PE to represent the lock. The
64-bit word is broken down into four 16-bit components,
representing the last, next, and signal portions of the lock,
plus an unused 16 bits of pad. This algorithm is straightfor-
ward to implement using 16-bit atomic compare-and-swap
and atomic swap operations.

5. Performance Evaluation
5.1 Test Platforms
We compare the performance of our OpenSHMEM imple-
mentation using XPMEM and SMARTMAP to the Open-
SHMEM implementation available on the Cray XE6, which
also uses XPMEM for some intra-node operations. Since our
XE6 was not available for testing with a custom operating
system, we evaluate our implementation using a commodity
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HP blade system that is nearly identical to the XE6 compute
nodes. The general architecture of both systems is shown in
Figure 4.

Each node contains two 2.4 GHz AMD “Magny-Cours”
8-core processors, consisting of two 4-core dies each. This
results in an aggregate of 16 cores per node, split into four
NUMA domains. Each NUMA domain (die) has two dedi-
cated memory controllers connected to 8 GB of DDR3-1333
memory, providing an aggregate of 32 GB of memory and
85.3 GB/s of memory bandwidth per node. The cores in each
NUMA domain share a common 5 MB L3 cache, poten-
tially accelerating intra-NUMA domain communication. All
caches in the system are kept coherent via a coherency proto-
col operating over the HyperTransport links. Additional de-
tails on the Magny-Cours processor and system architecture
can be found in [5].

The XE6 software environment consisted of the Cray
Linux Environment (CLE) version 3.1.61 and Message Pass-
ing Toolkit (MPT) version 5.2.3. The default compilation en-
vironment is PGI version 11.6. The HP blade system was
tested in two software configurations. In the first, a custom
lightweight Linux image modeled on CLE was used to eval-
uate our OpenSHMEM implementation using XPMEM for
intra-node communication. This image used the Linux ker-
nel version 2.6.35.7 configured similarly to the CLE com-
pute node kernel. In the second configuration, the Kitten
lightweight kernel was used to evaluate our OpenSHMEM
implementation using SMARTMAP for intra-node commu-
nication. We used a development version of Kitten for this
testing, which can be obtained by checking out SHA1 ID:
384dcf6453b9 from the Kitten repository at Google Code.
The compiler used for both of these configurations was gcc
version 4.1.2.

5.2 Micro-Benchmarks
An OpenSHMEM ping-pong micro-benchmark was used
to measure the latency and bandwidth between two cores.
PEs were pinned to specific cores and memory affinity

was used to ensure that only PE-local memory was al-
located. In the test, PE0 issues a shmem putmem to PE1
and then calls shmem wait to wait for the reply. PE1 calls
shmem wait to wait for PE1’s message, then sends a reply
with shmem putmem. Each message size was tested for 1000
trials, and the average, minimum, and maximum one-way
latency and bandwidth were recorded.

The Sandia Micro-Benchmarks (SMB) [2] message rate
test was ported from MPI to OpenSHMEM and used to
measure the aggregate intra-node message rate achievable
for an entire node. The test was configured to use all 16
cores, running one PE per core. For each iteration of the
test, each PE sends 128 messages to each of six peers. After
sending its messages, each PE uses shmem wait to wait for
the last message it is expecting to arrive. The total time
for these operations is recorded and used to calculate the
message rate (messages per second) achieved by the PE. The
test is performed for 4096 iterations and the average per PE
message rate is reported. To produce more realistic results,
the caches are invalidated between each iteration, and this
time is excluded from the measurement.

5.3 Results
In all figures in this section, “CrayXE/XPMEM” refers to
a compute node of our Cray XE6 system, and “Linux/XP-
MEM” and “Kitten/SMARTMAP” refer to our HP blade test
system running Linux and Kitten, respectively.

The measured ping-pong latency between two cores in
the same NUMA domain for each OpenSHMEM implemen-
tation is shown in Figure 5. The line in each plot indicates the
average latency (half round-trip time) and the error bars in-
dicate the minimum and maximum values recorded. In gen-
eral, all three OpenSHMEM implementations have compa-
rable average latencies, with an average 16-byte latency of
around 200 ns. In comparison, MPI ping-pong latency on
Cray XE6 for two cores on the same NUMA node is approx-
imately 600 ns for 16-byte messages. We also measured the
latency between all combinations of two cores in different
NUMA domains and the results were similar, with slightly
higher latency due to the off-die communication.

The maximum latency values recorded for Cray XE6
and the HP blade system running Linux are observed to be
much higher than the HP blade system running Kitten. This
demonstrates a key strength of Kitten – its ability to control
maximum latency, in addition to providing good average
latency. This is enabled by the low OS noise environment
that Kitten provides to applications. It should be noted that
we made significant effort to ensure that a fair comparison
was being made, and are confident that is the case. For
example, the same compiler, optimization level, and system
libraries were used in both environments (Kitten executes
Linux binaries). We also verified the accuracy of the timing
function in both OS environments and that the same physical
cores were being used in all cases.
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Figure 5. Ping-pong latency performance.

Figure 6 shows the average ping-pong bandwidth mea-
sured between two cores in the same NUMA domain. The
minimum and maximum values were very close to the av-
erage in all cases, so error bars are not shown. Again, all
three OpenSHMEM implementations show similar behav-
ior. The shape of the bandwidth curve was surprising. Typ-
ically, there will be a gradually increasing bandwidth curve
up to the bandwidth limit. Instead, the OpenSHMEM band-
width curves are nearly flat from 4 KB to 512 KB messages,
before starting to ramp up again. We initially theorized that
this may have something to do with the memcpy() imple-
mentation, so we tried two other versions– a version using
non-temporal store instructions and a version optimized by
Cray for previous-generation Opteron processors. Neither
resolved the issue. Ultimately, we determined the cause to be
the system’s cache coherency protocol interacting badly with
our benchmark’s buffer management scheme. The result was
many cache-to-cache transfers between the two cores partic-
ipating in the test. As others have observed, cache to cache
transfers on Magny-Cours generation Opteron processors
are much slower than expected [7]. We reran our benchmark
on an Intel Nehalem processor, which resulted in a band-
width curve with the expected shape.

For the Cray XE6, we also measured the ping-pong band-
width between two cores in the same NUMA domain when
using the Gemini network interface to move intra-node mes-
sages (labeled “CrayXE/Gemini”). As can be seen in the fig-
ure, this produces a radically different result. For messages
from 4 KB to 2 MB, the Gemini is able to move messages
much more efficiently than memcpy(). This is because the
data path of the message data does not result in cache-to-
cache transfers. Instead, cache lines move directly to and
from the Gemini network interface.

The per-PE message rate achieved for the SMB message
rate benchmark running on 16 cores is shown in Figure 7.
The three OpenSHMEM implementations show roughly the
same behavior. The differences were confirmed to be repeat-
able from run-to-run, and are likely due to slightly different
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system tuning between the Cray and HP systems. Kitten was
observed to have a repeatable 35% higher message rate than
the other systems for 8-byte messages, but this advantage
disappears for larger messages.

We were initially surprised by the high message rates
achieved by the OpenSHMEM implementations. MPI typ-
ically achieves a few million messages per second for sim-
ilar tests. However, after converting message rates to band-
widths the results are reasonable. For example, the per-PE
80 million messages per second achieved by Kitten for 8-
byte messages represents a system aggregate bandwidth of
9.8 GB/s. This is well within the system’s peak capabil-
ity of 85.3 GB/s. The difference between the observed and
peak bandwidths is due primarily to the overhead of making
OpenSHMEM library calls and the library-internal address
translation that must be performed. In contrast, configuring
Cray’s SHMEM to use the Gemini for intra-node commu-
nication results in a much lower system aggregate of 90.2
MB/s. This demonstrates the negative effect of serializing
all communication through the network interface.



6. Summary and Future Work
This paper has described the details of an implementation
of the OpenSHMEM PGAS data movement library for on-
node communication using operating system virtual mem-
ory mapping techniques. This implementation currently sup-
ports the Kitten lightweight kernel and Linux on modern
x86-64 multi-core processors. We described the implemen-
tation using Kitten’s SMARTMAP capability as well as a
similar virtual address mapping capability provided by the
XPMEM Linux kernel module and library. Performance re-
sults from communication micro-benchmarks were used to
compare the implementation on Kitten and Linux with a pro-
duction implementation of SHMEM available on the Cray
XE6 platform. Results show that the OpenSHMEM imple-
mentation provides comparable performance to the Cray im-
plementation and also indicates that Kitten latency perfor-
mance is much more predictable than Linux. As part of the
performance evaluation, we also identified several character-
istics of a multi-socket AMD Magny-Cours multi-core pro-
cessor system that can impact intra-node OpenSHMEM per-
formance.

This paper has described our initial implementation ef-
fort, and provided some early performance results, but it has
also identified several avenues of future work that are impor-
tant for helping to strengthen the viability of OpenSHMEM
as part of an environment for extreme-scale computing.

There are several activities related to the current imple-
mentation that we plan to pursue. Our implementation has
provided the base capability for several operations but there
is a significant amount of performance tuning that needs
to be done, particularly with respect to collective opera-
tions and factors impacting real applications. For exam-
ple, we have done an initial evaluation of using a non-
temporal memory copy mechanism that showed little benefit
for micro-benchmarks, but real applications that are sensi-
tive to cache effects may behave differently. One important
outcome of the OpenSHMEM effort will be to develop a
broader set of application benchmarks that can be used to
provide a more complete perspective on key performance
issues, as few benchmarks are currently available.

We plan to integrate this on-node implementation with
the Portals implementation [1] to provide a complete solu-
tion for distributed memory platforms. The implementation
of the collective and atomic operations must be modified in
order to consider both on-node and off-node communica-
tions. In particular, there are situations where spin waiting
needs to be replaced or combined with the appropriate calls
to make progress on network transfers. We recognize that
integration of these two implementations may occur in an
official OpenSHMEM code base.

We are also considering other ways of using the virtual
address mapping capability provided by SMARTMAP and
XPMEM. For example, rather than having each process map
all of the other processes on a node, an approach where only

a single non-application process maps in all of the applica-
tion processes and coordinates moving data between them
may have some benefit, such as mitigating some of the cache
pollution side affects of memory-to-memory copies. Should
OpenSHMEM be extended to include non-blocking opera-
tions, this approach could potentially support better over-
lap of communication and computation as well. This method
could also support an implementation approach where a ded-
icated process interacts with the network and handles all
requests for on-node as well as off-node communication.
There are some application scenarios and networks where
this approach may provide a significant performance bene-
fit.
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