
Tool-assisted performance measurement
and tuning of UPC applications

Guojing Cong Hui-fang Wen
IBM T.J. Watson Research Center

1101 Kitchawan road, Yorktown Heights, NY, 10598
{gcong,hfwen}@us.ibm.com

Yasushi Negishi, Hiroki Murata
IBM Research - Tokyo

1623-14 Shimotsuruma, Yamato-shi,Japan
{negishi,mrthrk}@jp.ibm.com

Abstract
The PGAS paradigm provides a shared-memory abstraction for
programming distributed-memory machines. UPC, one of the more
popular PGAS languages, improves ease of programming for the
user, yet it also makes it difficult for performance analysis to cor-
relate runtime behavior to program constructs. As efficient remote
memory access is critical to performance, understanding the com-
munication pattern can bring insight for performance diagnosis and
tuning.
In our study we develop a light-weight tracing mechanism to

track remote accesses in UPC programs and correlate them to the
program structures. Based on the profiling results, we also propose
caching and access coalescing through automated code refactoring
to improve communication efficiency for irregular codes. We an-
alyze the communication performance of UPC applications on a
cluster of SMPs, and show our tool-assisted optimizations achieve
significant speedups over the original programs.

1. Introduction
The partitioned global address space (PGAS) paradigm was pro-
posed as a productivity feature for high performance computing
systems. PGAS languages such as UPC [13] and X10 [1] present
a shared-memory abstraction for programming distributed-memory
machines. They give the programmer the control of data layout and
work assignment. PGAS languages improve ease of programming
and also provide leverage to programmer to tune for high perfor-
mance.
Cong et al. [3] showed that with PGAS mapping shared-

memory algorithms onto distributed-memory machines is straight-
forward. It is also shown in [3], however, that such implementation
can be very inefficient for large-scale irregular problems due to the
communication cost of numerous remote accesses. The straightfor-
ward PGAS performance per processor is much lower than that of
the SMP implementation for the connected components algorithm
[10]. The performance gap suggests that analyzing remote memory
accesses is critical to tuning PGAS programs.
Analyzing remote memory accesses requires correlating run-

time communication with high-level program structures to for-
mulate bottleneck hypotheses. Attributing communication cost in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

curred by implicit, remote accesses to source structures can be con-
voluted for PGAS programs. The difficulty results from both the
runtime layer that is transparent to the user and the compilation
scheme. The runtime system typically simulates a virtual shared-
memory machine with one-sided communications. Without a stan-
dard interface, it is cumbersome or even impossible to capture the
runtime communication behavior. In addition, most current compil-
ers invoke two phases of compilation for a PGAS program. First the
PGAS program (e.g., UPC program) is compiled into a message-
passing paradigm, that is, a native program (e.g., C program) plus
runtime communication support (e.g., MPI). Note that the native
program may not be actually produced; instead, it may exist only
as a compiler intermediate representation. Next, the native program
is compiled with a native compiler (e.g., XLC or gcc) into a binary
executable. Thus with no special bookkeeping during compilation
and runtime, most observed behavior can only be traced back to the
native program. Currently several PGAS languages have been pro-
posed. As UPC is arguably the most widely used with the most ma-
ture compilers and runtimes, we analyze and tune UPC programs
in our study.
In our study we develop a mechanism to trace remote memory

accesses in UPC applications. Different from other interfaces, for
example, GASP [12], our design closely couples with the compiler
and runtime design. As a result, the tracing is light-weight and
powerful, and our tool is able to map communication to source
code constructs such as functions, lines, and shared data structures.
We show that performance analysis assisted with our tool can help
the user better understand various aspects of the remote memory
accesses in UPC programs.
In addition to assisting performance analysis, our tool also pro-

vides automated refactoring support for optimizing remote accesses
in upc forall loops through caching and coalescing. We show that
our refactorings combined with the insights gained from profiling
can help the user detect and alleviate the communication ineffi-
ciency resulted from a large number of remote memory accesses.
Our experiments show that optimizations assisted by our tool can
achieve between 5 to 60 times speedups for the programs that we
study.
The rest of the paper is organized as follows. Section 2 discusses

prior related work in profiling and optimizing PGAS applications.
Section 3 presents our tracing methodology, and analyzes the re-
mote access behavior of a UPC application. We present our auto-
mated refactoring support to improve communication efficiency in
section 4 and experimental results in section 5. In section 6 we give
our conclusion and future work.

2. Related work
GASP [12] is a framework for the implementation of the PGAS
programming model to interact with the performance analysis tool.
It specifies an event-based interface so that a performance analysis
tool can analyze PGAS program performance by defining callback
functions for corresponding events. GASP relies exclusively on the
compiler for instrumentation and tracing. Although GASP tools are
portable (they in theory work with any compiler that implements
GASP), the disadvantage of GASP is the increased complexity
of compiler design and possibly runtime overhead, especially for
shared data structure analysis with compilers that adopt the multi-
phase compilation scheme.
GASP-based tools in theory may be able to correlate runtime re-

mote accesses to source data structures, yet we are not aware of any
study that present such results. For example, a recent performance
study of PGAS applications can be found in [11] where a GASP
tool is used. The communication is not mapped to the shared data
structures.
GASP is not supported by the IBM compiler for any of its

high-performance platforms. Another interface similar to GASP is
proposed in [5].
Mohr et al. [8] proposed a performance measurement infras-

tructure for Co-array Fortran on Cray X1. The infrastructure uses
high-overhead source-to-source instrumentation to intercept re-
mote memory accesses. Although the communication patterns
among processors are captured, mapping them to the source is
not discussed in [8].
Communication efficiency is a key focus for the compiler and

runtime optimization. In [2] Chen et al. presented the optimiza-
tions that the Berkeley UPC compiler implemented and their per-
formance impact on various kernels. For highly irregular codes as
the ones we will study in this paper, the proposed optimizations do
not appear to occur.

3. Analyzing remote memory accesses
Statistics about remote accesses, such as the percentage of time
spent on communication, the number of remote accesses between
two threads, and the amount of data transferred, are helpful for the
user to interpret observed performance and postulate bottleneck hy-
potheses. Correlating the runtime statistics to the source code and
the data structures can further help the user focus her optimization
efforts. In this section we present the design of our tool to capture
remote access statistics, and we use our tool to analyze an example
UPC program.

3.1 Profiling methodology
Our tracing tool closely couples with our UPC compiler/runtime
[14], yet it does not rely on the compiler for code instrumentation.
We base the design of our tool on the internals of the compiler, and
our approach is capable of establishing the link between runtime
behavior and static structures. The disadvantage is that our tool
assumes a certain UPC compilation scheme (e.g., remote accesses
are translated into runtime function calls) that may not be adopted
by other UPC compilers. To interact with other performance tools,
a translation layer may be added to produce the GASP event traces.
With the XL UPC compiler, a runtime transport function is

invoked for each remote memory access. Tracing remote memory
accesses is done by intercepting the transport functions through the
weak symbol mechanism. Suppose the remote get function fetches
data from a remote node. In the runtime remote get is defined as
a weak symbol as follows so the linker may use remote get if
remote get is not defined.

#pragma weak remote_get=_remote_get

The runtime library defines remote get, and our profiling li-
brary defines remote get. The remote get function captures run-
time statistics including time spent, amount of data transferred,
source and target of the transfer for remote get in addition to call-
ing remote get for the actual data transfer. This mechanism is the
same as the standard MPI tracing interface [7]. Hence if the UPC
runtime implements such an interface, our tool will be able to work
with the corresponding compiler.
Such profiling does not require recompiling the code, and incurs

relatively low overhead as no instrumentation is done to local
memory accesses. As each transport function specifies a remote
node and a shared variable described by a handle argument, we
can attribute the communication statistics to handles (but not yet to
the source).
To identify the source lines associated with the communication,

there is the option with our tool to walk the stack frames of a pro-
filed transport function. Stack walk stops at the first ancestor whose
call site in the source can be determined. Debugging information
from the compiler relative to the UPC source is needed for such
mapping.
Extra book-keeping is necessary to determine the shared vari-

ables involved in the communication. Recall that weak symbol pro-
filing captures communication statistics for each handle. Depend-
ing on how the handles are created during runtime, we map them
to the shared UPC data structures in two ways.
For shared variables allocated at compile time (e.g., global

shared variables), the compiler creates temporary variables during
the intermediate translation to store the handles. The naming of the
variables contains information that can be used to recover the orig-
inal data structures in the UPC program. We instrument the binary
with psigma [9] and intercept the handle allocation routine. The
handle value for the remote access and the address of the corre-
sponding temporary variable are captured and inserted into a hash
table during execution. At exit, the mapping between the communi-
cation to the source variable is established. The conceptual process
is as follows: remote access → handle → temporary variable →
UPC variable.
For variables dynamically allocated with upc alloc or upc all alloc,

their handles do not have associated intermediate variables. We as-
sociate remote accesses to the source lines where the variables are
allocated. To do so, we first analyze the binary and capture the call
sites of each shared memory allocation function. We then assign a
unique ID, for example, the corresponding binary address, for each
call site. The call sites can be mapped using debugging information
to the UPC lines. The binary is then instrumented, and we establish
during runtime the link between the handle value and the call site
ID. Thus we can map each handle value to the binary address of
the allocation call site and then to the source line. Simple parsing
of the source line suffices to recover the UPC variable associated
with the allocation. Conceptually, the process is as follows: remote
access → handle → binary address → source line → UPC vari-
able. Note that the mapping of statically allocated variables can not
be handled in this fashion as the allocation code is produced by the
compiler and does not map to any meaningful UPC sources.

3.2 Measurement
We present as an example our measuring of the remote accesses
in a UPC program using the tool we developed. The program
implements the connected components (CC) algorithm as described
in [3, 10]. CC takes a sparse graph as the input, and computes the
maximal connected subgraphs. We use a random graph of 10000
vertices and 40000 edges as the input. We test on a cluster of SMPs
with 2 IBM Power5 nodes. We use 4 processors per node. As we do
not measure the absolute performance, we defer the introduction of
the system to section 5.

In the first run, we turn on only remote access tracing without
mapping to the source code. The tracing overhead is low (within
5% of total execution time). The experiment shows that CC spends
a significant portion (between 35% and 55%) of running time on
remote accesses.
Fig. 1 shows the number of remote accesses on each thread, and

Fig. 2 shows the corresponding remote access time as a percentage
over the wall-clock time. There are slightly more remote accesses
on threads 4, 5, 6, and 7, and they spend more time on communica-
tion.
Next we turn on the mapping to the source lines, and rerun

the experiment. The overhead is still within 8% of the execution
time. We note that the tracing overhead does not increase with the
configuration size (e.g., roughly the same overhead is observed
for an execution with a larger input on a 16 node cluster with
each node running 16 threads). The reason is that for each remote
memory access, compared with the actual communication time
(going through the software stack and the physical network) the
time spent on logging is miniscule. There are 3 shared arrays
declared in the function (whose main loop is shown in Fig. 5) that
computes the connected components. Fig. 3 is a pie chart showing
the relative number of remote accesses to different shared arrays.
Most remote accesses are to D, and there is no remote access to El.
Fig. 4 illustrates the number of remote accesses to shared array P
from each individual thread. We can see they are roughly balanced
among the threads.
Profiling clearly suggests that tuning should focus on array D.

D is referenced at many lines in the code shown in Fig 5. The while
loop in the figure is divided into two parts, grafting of components
from lines 27 to 40 and shortcutting from lines 45 to 49. It is unclear
yet which of the two segments dominates the remote access time.
We construct the distribution of remote accesses on the source

lines as shown by the second column in Fig. 5. We see that most
remote accesses happen inside the grafting region, specifically, on
line 30. Lines 31 and 32 deserve a little discussion. Notice that
D[u] and D[v] are already retrieved on line 30. At first glance, the
number of remote accesses on lines 31 and 32 should be the same
as the distribution of D and P are identical. Yet there are roughly 2
times more remote accesses on line 32. This is due to the fact that
array D is updated on line 31, and the compiler generates code that
reloads the values of D[u] and D[v].
The remote access time distribution can be similarly con-

structed, and we omit those results due to limited space.

4. Improving communication efficiency through
caching and coalescing

Section 3.2 shows that CC incurs many remote accesses. Large ag-
gregate network latency resulted from numerous small messages is
the root cause of poor performance for many UPC programs. To im-
prove communication efficiency, our tool provides refactorings for
optimizing remote memory accesses through software caching and
message coalescing. Although in theory both can be implemented
by the compiler [4], in practice, due to the implications of memory
consistency and lack of runtime feedback, caching and coalescing
transformations are provided by very few compilers. In fact, neither
the IBM UPC compiler nor the Berkeley UPC compiler [15] opti-
mizes CC with the two transformations. In this section we present
our implementation of source code refactorings for caching and co-
alescing. Our optimizations focus on upc forall regions, and lend
themselves to easy customization from the user. Currently our tool
does not support automatic refactorings for caching and coalesc-
ing outside upc forall regions. We are aware that there exist codes,
especially the ones that are translated directly from prior MPI im-

25 while(1) {
26 grafted = 0;
27 upc_forall(i=0; i<m; i++; &El[i]) {
28 u = El[i].u;
29 v = El[i].v;
30 15027 if(D[u] < D[v]){
31 2074 D[D[v]] = D[u];
32 5981 P[D[v]] = D[u];
33 grafted = 1;
34 }
35 else if (D[v]<D[u]){
36 2084 D[D[u]] = D[v];
37 6142 P[D[v]] = D[v];
38 grafted = 1;
39 }
40 }
41 upc_barrier;
42
43 grafted = all_reduce_i(grafted, UPC_ADD);
44 if(grafted == 0) break;
45 upc_forall(i=0; i<n; i++; &D[i]) {
46 1991 while(D[i] != D[D[i]]) {
47 1313 D[i] = D[D[i]];
48 }
49 }
50 upc_barrier;
51 }

Figure 5. Distribution of remote accesses on the statements on
thread 0. Both D and P are integer arrays. El is an input edge list.
Each edge has two endpoints (u,v). D[i] represents the connected
component that vertex i belongs to. All arrays have default distri-
bution. There is no P in the original CC algorithm, and we add P to
record the grafting and to showcase the analysis using our tools

plementations, that do not employ upc forall constructs. In general
it is hard to optimize them through only source code refactorings.

4.1 Caching remote accesses
For each communication-intensive upc forall statement, we main-
tain at each thread a software cache to provide fast access to each
shared data structure that incurred many remote accesses in the pro-
filing run. The cache is implemented using a hash table with the
address to the shared data element as the hash key. Various hash
functions may be used, and we find simple linear hashing functions
suffice for our purpose. When an access to a remote address hits the
cache, the value in the table is returned; otherwise a remote request
is issued to bring in the data. Software caching has appeared in ear-
lier studies (e.g., [4]). Our contribution is the design of efficient
caching for UPC programs for data intensive applications.
As the iterations in upc forall are parallel, our software cache

implements relaxed memory consistency, that is, the completion
order of memory accesses can be arbitrary on different threads. Re-
laxed consistency provides much freedom as to whether and how
to update data held at remote caches. In fact most UPC programs
adopt relaxed consistency models for better performance. We allow
a software cache line to be held at multiple caches in valid state si-
multaneously regardless of remote updates. Dirty copies are flushed
out at the synchronizations points (e.g., upc barrier). When flush-
ing out, different copies of the same cache line race to update the
memory, and depending on the policy tunable by the user, one of
them wins. For example, if a copy from any arbitrary processor may
win, the memory model is similar to concurrent-read-concurrent-
write PRAM (CRCW-PRAM); if we define a priority on the copies
from different threads, we can simulate priority CRCW-PRAM.
We adopt an extreme cache replacement policy to avoid expen-

sive runtime cache coherence traffic. Our caches can be considered

Figure 1. Number of remote accesses Figure 2. Remote access time

Figure 3. Accesses to shared arrays Figure 4. Remote accesses to P

as fully associative with “unlimited” capacity, and there is no cache
line replacement at all during the loop execution. Under this policy,
the hash table size can grow to several times of the input size. Mem-
ory consumption usually is not a big concern for software caches.
For data intensive applications, however, there may not be enough
extra memory for the cache to grow. To maintain zero cache line re-
placement inside the loop, we tile the upc forall iterations to limit
the memory consumption of caches. Consider the following exam-
ple

upc_forall(i=0; i<n; i++; i) {...}

The software cache size is determined by n. According to the
available memory size C, the loop is tiled as follows

for(ii=0; ii*C <n; ii++)
upc_forall(i=ii*C, i<min((ii+1)*C, n); i++; i) {...}

The tiled scheduling effectively reduces the cache size (now pro-
portional to C), and pays the penalty of "n

C # rounds of communi-
cation to flush the dirty lines.
Customizing the parameter C and the race arbitration policy are

exposed to the user through our automated source code refactoring
facility.

4.2 Coalescing
Caching is effective when the program exhibits good temporal lo-
cality with frequent data reuse. For parallel programs with poor
temporal locality, we combine software caching with message coa-
lescing [4] to further improve communication performance.
For shared array accesses whose indices can be determined

without requesting remote data, the indices are computed in ad-
vance, and the corresponding values are prefetched into the local

caches in batches. This can be implemented using several all-to-all
or similar communication primitives [3]. As a result, many short
messages are coalesced into a few long ones, and the adverse im-
pact of network latency is alleviated. Similarly, writing dirty data to
remote locations is also implemented with coalescing. The batched
reads and writes occur outside the upc forall loop. During the ex-
ecution of the loop, access to prefetched data becomes local, and
various prefetching algorithms can be used to prefetch data that are
not already brought in. Again the customization of the prefetching
is exposed to user through our refactoring tool.

4.3 Automated refactorings
Caching and coalescing are implemented through source code
refactoring with a support library in our tool. The programmer can
either use the library manually to add caching support for the ac-
cess of shared data structures, or she can specify the data structures
and have our utility automatically refactor the program. The utility
is available under IBM alphaWorks [6], and interested readers are
welcome to give it a try.
As we target only upc forall statements, the static analysis in-

volved in the refactoring is straightforward. The iterations may be
scheduled in any order. Within an iteration we maintain program
order and preserve synchronization semantics among threads at the
barriers. We next give an example of refactoring UPC programs.
The following UPC code computes the dot product of two

vectors. Vector x is of size n with default distribution, while vector
y is of size 2n also with default distribution. The computation is
xi ← xi × y2i.

1: int dp(int n, shared int *x, shared int *y)
2: { int i;
3: upc_forall (i = 0; i < n; i++; &x[i]) {
4: x[i] = x[i] * y[i * 2];
5: }
6: return 0;
7: }

In the code at line 4 access to x is local as specified by the
upc forall statement (&x[i] states that the thread owning x[i] ex-
ecutes the computation). Access to y[2i] is remote for most i,
i ∈ [0, n− 1]. Profiling shows that remote accesses are entirely to-
wards y, the refactored version with caching, coalescing, and cache
size management is shown below.

1: int dp(int n, shared int *x, shared int *y)
2: {
3: int i, chunk, ii, ty;
4: chunk = 1024;
5: hpcstpf_open(y, chunk);
6: for (ii = 0; ii * chunk < n; ii++) {
7: upc_forall (i = ii * chunk; i < MIN((ii + 1) * chunk, n);
8: i++; &x[i]) {
9: hpcstpf_hint(hdl, i * 2);
10: }
11: hpcstpf_start_download(hdl);
12: hpcstpf_finish_download(hdl);
13: upc_forall (i = ii * chunk; i < MIN((ii + 1) * chunk, n);
14: i++; &x[i]) {
15: hpcstpf_get(hdl, i * 2, &ty);
16: x[i] = x[i] * ty;
17: }
18: hpcstpf_start_upload(hdl);
19: hpcstpf_finish_upload(hdl);
20: }
21: hpcstpf_close(hdl);
22: return 0;
23: }

In the refactored program, the loop is first tiled with a tile size
1024. hpcstpf open at line 5 is a function from our library that

prepares a cache for the shared array y with cache size chunk.
hpcstpf hint at line 9 computes indices to shared array y used in the
loop. hpcstpf start download and hpcstpf finish download at lines
11-12 prefetches data in batches to the cache. hpcstpf get at line
15 accesses the cache and returns the value for the specified array
index. hpcstpf start upload and hpcstpf finish upload at line 18-19
flushes the dirty copies of y, if any (in this example y is clean),
to update the shared array. hpcstpf close at line 21 destroys the
software cache and releases allocated resources.

5. Tuning results
We use our tool to assist the tuning of two programs that are
either irregular or have a significant amount of communication.
They are connected components (CC) and 2D stencil computation
(Stencil). CC represents a class of sparse, graph problems with
highly irregular memory access pattern. Stencil has the typical
access pattern of many scientific computations where the value of
an attention point is computed using values from adjacent points.
Remote accesses occur at the 2D borders of the data grid on each
processor. Profiling shows that in both programs there are many
remote accesses to certain shared data structures.
Our target platform is a cluster of IBM P575+ nodes connected

with a dual-plane 2GB/s High-performance Switch (HIPS). Each
node is configured as 16 CPUs running at 1.9 GHz with 64GB
DDR2 memory. This setting is typical of clusters of SMPs that are
the basis of many supercomputers. The cluster has 32 nodes, and is
shared by many bench-markers. Due to limited availability and the
long execution time of naive UPC implementations, we can not run
all experiments using all 32 nodes. We provide performance results
on 32 nodes only for the more interesting case, that is, the highly
irregular CC.
For CC we use an input of random graph with 100 million

vertices and 200 million edges. The number of nodes varies from 8
to 32. Fig. 6 compares the performance of two programs. Original
shows the performance of the original program. Manual shows
the performance of the manually-tuned program as described in
[3]. In [3], the shared-memory accesses in CC are scheduled in
a recursive fashion for improved locality behavior that resulted in
better communication and cache-performance. Various problem-
specific and UPC-specific optimizations (such as contracting the
edge list and privatizing local accesses) are also presented in [3].
In this study, only optimizations that can be automated in [3] are
implemented by Manual.

Tool optimized shows the performance of the program opti-
mized by our tool. The bars in Fig. 6 are divided into 3 groups
for the runs with 8 nodes, 16 nodes, and 32 nodes, respectively.
The Manual and Tool optimized have comparable performance,

and they are about 5 times faster than Original.
For Stencil we run our experiments with different grid sizes.

Fig. 7 shows that using 16 nodes and 2 threads per node, the per-
formance is improved by about 1.7 to 3.5 times with our optimiza-
tion. When we further increase the number of threads per node, the
performance improvement decreases as there are fewer remote ac-
cesses on each thread and the “communication” within a node starts
to dominate.

6. Conclusion and future work
We presented our study of tool-assisted performance analysis and
tuning of UPC applications. In addition to capturing the runtime
statistics, our tool is capable of attributing the communication re-
sulted from remote memory accesses to the source. With the insight
gained from profiling, we can further use our refactoring tool to im-
plement caching and coalescing for remote accesses. Experimental
results show that significant performance improvement is achieved

Figure 6. Performance of CC

Figure 7. Performance of Stencil

for two UPC programs, each representing a wide range of applica-
tions.
In the future we plan to study the shared-memory access pat-

terns including local accesses in UPC applications, and observe
patterns for performance problems. We also want to investigate
whether a similar strategy can be adapted for other PGAS lan-
guages.

References
[1] P. Charles, C. Donawa, K. Ebcioglu, and etc. X10: An object-oriented

approach to non-uniform cluster computing. In Proceedings of the
2005 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), pages 519–538, San
Diego, CA, 2005.

[2] W. Chen, D. Bonachea, J. Duell, and etc. A performance analysis
of the berkeley upc compiler. In Proceedings of the 17th annual
international conference on Supercomputing, ICS ’03, pages 63–73,
New York, NY, USA, 2003. ACM.

[3] G. Cong, G. Almasi, and V. Saraswat. Fast PGAS implementation
of distributed graph algorithms. In Proc. the 2010 ACM/IEEE Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC2010), SC ’10, pages 1–11, Washington, DC,
USA, 2010. IEEE Computer Society.

[4] R. Das, Y. Hwang, M. Uysal, and etc. Applying the CHAOS/PARTI
library to irregular problems in computational chemistry and computa-
tional aerodynamics. In Proc. Scalable Parallel Libraries Conference,
pages 45–56. IEEE Computer Society Press, 1993.

[5] M. Hermanns, B. Mohr, and F. Wolf. Event-based measurement and
analysis of one-sided communication. In Proc. Euro-Par 2005, pages
156–166. Springer, 2005.

[6] High productivity computing systems toolkit. IBM alphaworks.
http://www.alphaworks.ibm.com/tech/hpcst.

[7] J.L. Martin and J. Dongarra. Special issue on MPI: a message-passing
interface standard. Int. J. Supercomput. Appl. High Perform. Eng.,
8(3-4), 1994.

[8] B. Mohr, L. De Rose, and J. Vetter. A performance measurement
infrastructure for co-array fortran. In Proc. Europar 2005, Lecture
Notes in Computer Science, volume 3648, pages 146–155. Springer
Berlin/Heidelberg, 2005.

[9] S. Sbaraglia, K. Ekanadham, S. Crea, and etc. pSigma: An infras-
tructure for parallel application performance analysis using symbolic
specifications. In Proc. of the sixth European Workshop on OpenMP,
2004.

[10] Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algo-
rithm. J. Algs., 3(1):57–67, 1982.

[11] H. Su, M. Billingsley, and A.D. George. Parallel performance wizard:
A performance system for the analysis of partitioned global-address-
space applications. Int. J. High Perform. Comput. Appl., 24:485–510,
November 2010.

[12] H. Su, D. Bonachea, A. Leko, and etc. GASP! a standardized perfor-
mance analysis tool interface for global address space programming
models. In Proc. of Workshop on State-of-the-Art in Scientific and
Parallel Computing (PARA06), 2006.

[13] Unified Parallel C, URL:http://en.wikipedia.org/wiki/Unified Parallel C.
[14] IBM, The IBM XL UPC Compiler, http://www.alphaworks.ibm.

com/tech/upccompiler.
[15] K. Yelick et al., The Berkeley UPC Compiler, http://upc.lbl.

gov/.

