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Abstract
This paper presents a software framework for the model checking
of the inter-thread synchronization functionalities of Unified Paral-
lel C (UPC) programs. The proposed framework includes a front-
end compiler that generates finite models of UPC programs in the
modeling language of the SPIN model checker. The model gener-
ation is based on a set of abstraction rules that transform the UPC
synchronization primitives to semantically-equivalent code snip-
pets in SPIN’s modeling language. The back-end includes SPIN
that verifies the generated model. If the model checking succeeds,
then the UPC program is correct with respect to properties ofinter-
est such as data race-freedom and/or deadlock-freedom. Otherwise,
the back-end provides feedback assequences of UPC instructions
that lead to a data race or a deadlock from initial states, called
counterexamples. Using the UPC-SPIN framework, we have de-
tected design flaws in several real-world UPC applications,includ-
ing a program simulating heat flow in metal rods, parallel bubble
sort, parallel data collection, and an integer permutationprogram.
More importantly, for the first time (to the best of our knowledge),
we have mechanically verified data race-freedom and deadlock-
freedom in a UPC implementation of the Conjugate Gradient (CG)
kernel of the NAS Parallel Benchmarks (NPB). We believe that
UPC-SPIN provides a valuable tool for developers towards increas-
ing their confidence in the computational results generatedby UPC
applications.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification; D.2.5 [Software Engineering]: Testing
and Debugging

General Terms High Performance Computing, Verification

Keywords PGAS, UPC, Model Checking

1. Introduction
The dependability of High Performance Computing (HPC) soft-
ware is of paramount importance as researchers and engineers use
HPC in critical domains of application (e.g., weather simulations,
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bio-electromagnetic modeling of human body, etc.) where design
flaws may mislead scientists’ observations. As such, we needto
increase the confidence of developers in the accuracy of computa-
tional results. One way to achieve this goal is to devise techniques
and tools that facilitate the detection and correction of concurrency
failures1 such as data races, deadlocks and livelocks. Due to the
inherent non-determinism of HPC applications, software testing
methods often fail to uncover concurrency failures as it is prac-
tically expensive (if not impossible) to check all possibleinter-
leavings of threads of execution. An alternative method ismodel
checking [4, 11, 18] where we generatefinite modelsof programs
that represent a specific behavioral aspect (e.g., inter-thread syn-
chronization functionalities), and exhaustively verify all interleav-
ings of the finite model with respect to a property of interest(e.g.,
data race/deadlock-freedom). This paper presents a novel frame-
work (see Figure 1) for model extraction and model checking of
the Partitioned Global Address Space (PGAS) applications devel-
oped in Unified Parallel C (UPC).

While many HPC applications are developed using the Message
Passing Interface (MPI) [9], there are important science and engi-
neering problems that can be solved more efficiently in a shared
memory model in part because the pattern of data access by inde-
pendent threads of execution is irregular (e.g., the weighted match-
ing problem [3, 17, 23]). As such, while there are tools for the
model checking of MPI applications [20, 22, 25], we would like
to enable the model checking of PGAS applications. The PGAS
memory model aims at simplifying programming and increasing
performance by exploiting data locality in a shared addressspace.

This paper presents a framework, called UPC-SPIN (see Figure
1), for model extraction and model checking of UPC applications
using the SPIN model checker [11], thereby facilitating/automating
the debugging of concurrency failures. UPC is a variant of the C
programming language that supports the Single Program Multiple
Data (SPMD) computation model with the PGAS memory model.
UPC has been publicly available for many years and so many HPC
users have experience with it. The proposed framework (see Fig-
ure 1) requires programmers tomanuallyspecify abstraction rules
for model extraction in a Look-Up Table (LUT). Such abstraction
rules are property-dependent in that for the same program and dif-
ferent properties/requirements (e.g., data race-freedom, deadlock-
freedom), we may need to specify different abstraction rules. The
abstraction rules specify how relevant UPC constructs are captured
in the modeling language of the SPIN model checker [11]. After
creating a LUT, UPC-SPIN automatically extracts a finite model

1 In the context of dependable systems [1],faults are events that cause a
system to reach anerror state from where system executions may deviate
from its specification; i.e., afailure may occur.



from the source code and model checks the model with respect to
properties of interest. The abstraction LUTs should be keptsyn-
chronized with any changes made in the source code. Our experi-
ence shows that after creating the first version of an LUT, keeping
it synchronized with the source code has a relatively low overhead.

The proposed framework includes two components (see Fig-
ure 1): a front-end compiler and a back-end model checker. The
front-end, called UPC Model Extractor (UPC-ModEx), extends the
ModEx model extractor of ANSI C programs [12–14] in order
to support the UPC grammar. UPC-ModEx takes a UPC program
along with a set of abstraction rules (specified as a LUT) and auto-
matically generates a Promela model (see Figure 1).2 Promela [10]
is the modeling language of SPIN, which is an extension of C with
additional keywords and abstract data types for modeling concur-
rent computing systems. We expect that the commonalities ofUPC
and Promela will simplify the transformation of UPC programs to
Promela models and will decrease the loss of semantics in such
transformations. We present a set of built-in abstraction rules for
the most commonly-used UPC synchronization primitives. After
generating a finite model in Promela, developers specify properties
of interest (e.g., data race-freedom) in terms of either simple asser-
tions or more sophisticated temporal logic [8] expressions. SPIN
verifies whether all executions of the model from its initialstates
satisfy the specified properties. If the model fails to meet the prop-
erties, then UPC-SPIN generates a sequence of program instruc-
tions that could lead to the failure from the initial state (Figure 1).

Figure 1. An overview of the UPC-SPIN framework.

We have used UPC-SPIN to detect and correct concurrency fail-
ures in small instances (i.e., programs with a few threads) of real-
world UPC programs including parallel bubble sort, heat flowin
metal rods, integer permutation and parallel data collection. More
importantly, for the first time (to the best of our knowledge), we
have generated a finite model of a UPC implementation of the
Conjugate Gradient (CG) kernel of the NAS Parallel Benchmarks
(NPB) [24]. We have model checked small instances of the ex-
tracted model of CG for data race-freedom and deadlock-freedom,
thereby demonstrating its correctness. While the success of model
checking means a model is correct, model checking can only beap-
plied to small/moderate size models (see Section 6) due to the state

2 An executable copy of UPC-ModEx is available athttp://asd.cs.
mtu.edu/projects/pgasver/index_files/upc-modex.html.

space explosion problem. This may appear as a significant limita-
tion considering the common belief amongst developers thatsome
failures manifest themselves only when an application is scaled up
(in terms of the number of processes and domain size of the in-
put variables/parameters). Nonetheless, there is ample experimen-
tal evidence [16, 21] that most concurrency failures also exist in
small instances of concurrent applications. Thus, a model checker
that exhaustively verifies all possible interleavings can detect such
failures in small instances of HPC applications.
Organization. Section 2 provides a background on UPC, model
extraction and model checking. Section 3 discusses how the
UPC-ModEx front-end extends ModEx to support the UPC con-
structs. Subsequently, Section 4 illustrates how we model check the
Promela models of UPC programs with SPIN. Section 5 presents
the model checking of an UPC implementation of the CG kernel of
the NPB benchmarks [24]. Section 6 presents the time/space costs
of model checking for our case studies. Finally, Section 7 makes
concluding remarks and discusses future work.

2. Preliminaries
This section provides the basic concepts of UPC [5, 7] (Subsection
2.1), finite models of UPC programs (Subsection 2.2), an overview
of model checking using SPIN [11] (Subsection 2.3) and concur-
rency failures and properties of interest (Subsection 2.4). Subsec-
tion 2.5 briefly discusses the internal working of the ANSI C Model
Extractor (ModEx).
2.1 UPC: An Overview
UPC extends ANSI C by a SPMD model of computation where the
same piece of code (e.g., Figure 2) is replicated in distinctthreads
of execution to process different data streams. The memory model
of UPC (i.e., PGAS) divides its address space into shared andpri-
vate parts. The shared area of the memory space is partitioned into
THREADS sections, where THREADS is a system constant repre-
senting the total number of threads. Each thread has a private mem-
ory space and is also uniquely associated with a shared section,
called itsaffinity; e.g.,A[MYTHREAD] in Lines 10-11 of Figure 2,
whereMYTHREAD denotes thread’s own thread number. To support
parallel programming, UPC augments C with a set of synchroniza-
tion primitives, a work-sharing iteration statementupc forall and a
set of collective operations. Figure 2 demonstrates an integer per-
mutation application that takes an array of distinct integers (see
arrayA in Line 2 of Figure 2) and randomly generates a permu-
tation ofA without creating any duplicate/missing values. Shared
data structures are explicitly declared with ashared type modifier.
A shared array ofTHREADS locks (of typeupc lock t) is declared
in Line 3. Each thread initializesA[MYTHREAD] (Lines 10-11) and
randomly chooses an array element (Line 14) to swap with the con-
tents ofA[MYTHREAD].
2.2 Finite Models of UPC Programs
Let p be a UPC program with a fixed number of threads, denoted
THREADS > 1. A model of p is a non-deterministic finite state
transition system denoted by a triple〈Vp, δp, Ip〉 representing the
inter-thread synchronization functionalities ofp, called thesyn-
chronization skeletonof p. Vp represents a finite set of synchro-
nization variables with finite domains. Asynchronization variable
is a shared variable (e.g., locks) between multiple threadsused for
synchronizing access to shared resources/variables. Acontrol vari-
able (e.g., program counter) captures the execution control of a
thread. Astateis a unique valuation of synchronization and control
variables. An ordered pair of states(s0, s1) denotes a transition.
A threadcontains a set of transitions, andδp denotes the union of
the set of transitions of threads ofp. We use actions (a.k.aguarded
commands) to represent sets of program transitions. An action is
of the formgrd → stmt, where the guardgrd is an expression
in terms of model variables and the statementstmt updates model



variables. When the guardgrd holds (i.e., the action isenabled),
the statementstmt can be executed, which accordingly updates
some variables. Each action captures a set of transitions ofa spe-
cific thread.Ip represents a set of initial states. The state space of
p, denotedSp, is equal to the set of all states ofp. A state predicate
is a subset ofSp; i.e., defines a function fromSp to {true, false}. A
state predicateX is true (i.e., holds) in a states iff (if and only if)
s ∈ X . A computation(i.e., synchronization trace) of p is amax-
imal sequenceσ = 〈s0, s1, · · · 〉 of statessi, wheres0 ∈ Ip and
each transition(si, si+1) belongs to an action of some thread; i.e.,
(si, si+1) ∈ δp for i ≥ 0. That is, eitherσ is infinite, or if σ is
a finite sequence〈s0, s1, · · · , sf 〉, then no thread is enabled atsf ,
where anenabled threadhas at least one enabled action.
2.3 Model Checking, SPIN and Promela
Explicit-statemodel checkers (e.g., SPIN [11]) create models as
finite-state machines represented as directed graphs in memory,
where each node captures a unique state of the model and each arc
represents a state transition. Symbolic model checkers create mod-
els as Binary Decision Diagrams (BDDs) (e.g., SMV [18]) and are
mostly used for hardware verification. If model checking succeeds,
then the model is correct. Otherwise, model checkers provide sce-
narios as to how an error is reached from initial states, calledcoun-
terexamples. SPIN is a explicit-state model checker with a C-like
modeling language, called Promela [10]. A Promela model com-
prises (1) a set of variables, (2) a set of (concurrent) processes
modeled by a predefined type, calledproctype, and (3) a set of asyn-
chronous and synchronous channels for inter-process communica-
tions. The semantics of Promela is based on an operational model
that defines how the actions of processes are interleaved. Actions
can be atomic or non-atomic, where an atomic action (denotedby
atomic {} blocks in Promela) ensures that the guard evaluation and
the execution of the statement is uninterrupted.
2.4 Concurrency Failures and Properties of Interest
To verify a model using model checkers, developers have to spec-
ify safety and liveness properties of interest. Intuitively, a safety
property stipulates that nothing bad ever happens in any com-
putation. Data race-freedom and deadlock-freedom are instances
of safety properties. Adata raceoccurs when multiple threads
access shared data simultaneously, and at least one of thoseac-
cesses is a write [19]. A block of statements accessing shared data
is called acritical section of the code, denotedCSi for thread
0 ≤ i <THREADS; e.g., Lines 19-21 and 29-31 in Figure 2 where
threads perform the swapping. A data race could occur when two
or more threads are in their critical sections. However, theupc lock
statements in Lines 17-18 and 27-28 ensure that each thread gets
exclusive access to its critical section so no data races occur. The
section of the code where a thread tries to enter its criticalsection
is called itstrying section, denotedTSi for threadi (e.g., Lines 17-
18 and 27-28). A program isdeadlockedwhen no thread canmake
progressin entering its critical section. Deadlocks occur often due
to circular-wait scenarios when a set of threadsT1, · · · , Tk wait for
one another in a circular fashion (e.g.,T1 waits forT2, T2 waits for
T3 and so on untilTk which waits forT1). Formally, a deadlock
state has no outgoing transitions. The twoif-statements in Lines 16
and 26 of Figure 2 impose a total order on the way lock variables
are acquired in order to break circular waits.

In the UPC program of Figure 2, a safety property stipulates that
it is always the casethat no two threads have access to the same
array cell. In SPIN, such properties are formally specified using the
alwaysoperator in Linear Temporal Logic (LTL) [8], denoted�.
The example UPC code of Figure 2 ensures that the safety property
�(((main[i] : s = j) ∨ (main[j] : s = i)) ⇒ ¬(CSi ∧ CSj))
is met by acquiring locks (0 ≤ i, j < THREADS), whereCSi is
a state predicate representing that threadi is in its critical section
(i.e., Lines 19-21 or Lines 29-31) and ‘main[i] :s’ denotes the value

of the local variables in threadi created from the proctype ‘main’
in Figure 4.

A progressproperty states that it isalways the case that if a
predicateP becomes true, then another predicateQ will eventually
hold. We denote such progress properties byP  Q (read it as
‘P leads toQ’) [8]. For example, in the example UPC program
of Figure 2, we specify progress for each threadi (0 ≤ i <
THREADS) asTSi  CSi; i.e., it is always the case that if thread
i is in its trying section (represented by the predicateTSi), then it
will eventually enter its critical section (i.e.,CSi holds).

1 // Declaring shared global variables
2 shared int A[THREADS];
3 upc_lock_t *shared lk[THREADS];
4

5 int main(int argc, char **argv) {
6 int i, s, temp;
7

8 // The body of each thread starts
9 // Initialize the array A with distinct integers

10 i = MYTHREAD;
11 A[i] = i;
12 upc_barrier;
13 // Randomly generate a swap index
14 s = (int)lrand48() % (THREADS);
15

16 if (s<i) {
17 upc_lock(lk[i]); // Acquire locks
18 upc_lock(lk[s]);
19 temp = A[i]; // Swap
20 A[i] = A[s];
21 A[s] = temp;
22 upc_unlock(lk[s]); // Release locks
23 upc_unlock(lk[i]);
24 }
25

26 if (i<s) {
27 upc_lock(lk[s]); // Acquire locks
28 upc_lock(lk[i]);
29 temp = A[i]; // Swap
30 A[i] = A[s];
31 A[s] = temp;
32 upc_unlock(lk[i]); // Release locks
33 upc_unlock(lk[s]);
34 }
35 }

Figure 2. Excerpts of the integer permutation program in UPC.

2.5 ModEx: Model Extractor of ANSI C Programs
Since in Section 3 we extend the front-end compiler of the ANSI
C Model Extractor (ModEx) [12–14] to support the UPC grammar,
this section presents an overview of ModEx, which is a software
tool for extracting finite models from ANSI C programs.

ModEx generates finite models of C programs in three phases,
namelyparsing, interpretation using abstraction rulesand opti-
mization for verification. In theparsing phase, ModEx generates
an uninterpreted parse tree of the input source code that captures
the control flow structure of the source code and the type and scope
of each data object. All basic linguistic constructs of C (e.g., decla-
rations, assignments, conditions, function calls, control statements)
are collected in the parse tree and remain uninterpreted. The parse
tree also keeps some information useful for representing the re-
sults of model checking back to the level of source code (e.g., as-
sociation between the lines of source code and the lines of code
in the model). The essence of theinterpretation phase is based
on atabled-abstractionmethod that pairs each parse tree construct
with an interpretation in the target modeling language. ModEx can
perform such interpretation based on either a default set ofab-
straction rules or programmer-defined abstraction rules. Different



types of abstractions can be applied to the nodes of the parsetree
including local slicing andpredicate abstraction. In local slicing,
data objects that are irrelevant to the property of interest(e.g., lo-
cal variables that have no impact on inter-thread synchronizations)
are sliced away. Any operation (e.g., assignments, function calls)
performed on or dependent upon irrelevant data objects are sliced
away and replaced with a null operation in the model. In predicate
abstraction, if there are variables in the source code whosedomains
include more information than necessary for model checking, then
they can be abstracted as Boolean variables in the model. Forex-
ample, consider a variable0 ≤temp ≤ 100 that stores the temper-
ature of a boiler tank (in Celsius), and the program should turn off
a burner if the temperature is 95 degrees or above. For verifying
whether the burner is off whentemp ≥ 95, a Boolean variable can
capture the value of a predicate representing whether or nottemp is
below 95. In theoptimization phase, ModEx uses a set of rewrite
rules to simplify some generated statements in Promela and to elim-
inate statements that have no impact on verification. For example,
the guarded commandfalse → x = 0 in Promela can be omit-
ted without any impact on the result of model checking because the
guard is alwaysfalseand the action is never enabled/executed.

3. UPC Model Extractor (UPC-ModEx)
This section discusses how we extend ModEx to support the pars-
ing (Section 3.1) and the interpretation (Section 3.2) of UPC con-
structs in UPC-ModEx. Section 3.3 discusses how we abstract
read/write accesses to shared data, and Section 3.4 demonstrates
model extraction in the context of the integer permutation program
in Figure 2.

3.1 Parsing UPC Constructs
The ANSI C ModEx lacks support for the UPC extension of C
including type qualifiers, unary expressions, iteration statements,
synchronization statements and UPC collectives. Due to space con-
straints, we omit the extension for unary expressions (see [6] for
details). The extension for UPC collectives is outside the scope of
this paper.
Type qualifiers.UPC includes three type qualifiers, namelyshared,
strict andrelaxed. Theshared type qualifier is used to declare data
objects in the shared address space. We augment the grammar using
the following rules in the BNF form [2]:

- type qual: CONST | VOLATILE | shared type qual | refer-
ence type qual

- shared type qual: “shared” | “shared” ‘[’ opt const expr ‘]’ |
“shared” ‘[*]’

The reference type qualifiersstrict and relaxed are used to de-
clare variables that are accessed based on the strict or relaxed mem-
ory consistency model.

- reference type qual: “relaxed” | “strict”
We note that, in this paper, we focus on model checking in the

strict consistency model.
Iteration statements.In addition to regular iteration statements of
C, UPC has a work-sharing iteration statement, denotedupc forall.
The upc forall statement enables programmers to distribute inde-
pendent iterations of afor-loop across distinct threads. The gram-
mar ofupc forall in BNF is as follows:

- forall stemnt: “upc forall” ’(’ opt expr ’;’opt expr ’;’ opt expr
’;’ affinity expr ’)’ stemnt

- affinity expr: “continue” | opt expr

The affinity expressionaffinity expr determines which thread
executes which iteration of the loop depending on the affinity
of the data objects referred inaffinity expr. If affinity expr is an
integer expressionexpr, then each thread executes the body of
the loop whenMYTHREAD is equal to (expr mod THREADS). If
affinity expr is continue or not specified, then each thread executes
every iteration of the loop body.

Synchronization statements.The most commonly used synchro-
nization statements in UPC includeupc barrier, upc wait and
upc notify statements. Moreover, UPC has a new typeupc lock t
that enables programmers to declare lock variables for synchroniz-
ing access to shared resources/data. The two functionsupc lock()
andupc unlock() are used to acquire and release shared variables
of typeupc lock t. The grammar of the synchronization statements
is as follows:

- upc barrier stemnt: “upc barrier” opt expr ’;’
- upc wait stemnt: “upc wait” opt expr ’;’
- upc notify stemnt: “upc notify” opt expr ’;’
We extend ModEx to support the compilation of UPC-specific

constructs discussed above.
3.2 Interpreting UPC Constructs Using Abstraction
This section presents a set of abstraction rules that we havede-
veloped for model extraction from UPC programs. We use ModEx
commands [12–14] for the specification of such rules. Each rule is
of the form:

left-hand side right-hand side

The left-hand side is a UPC statement and theright-hand side
could be either a piece of Promela code that should be generated
corresponding to theleft-hand side or an abstraction command that
specifies how theleft-hand side should be treated in the model (see
Table 1 for some example commands). The LUT comprises a set
of abstraction rules. For example, theskip command generates a
null operation in the Promela model corresponding to theleft-hand
side, thehidecommand conceals theleft-hand side in the model; i.e.,
nothing is generated, and thekeepcommand preserves theleft-hand
side in the Promela model. Some abstraction commands enable
string matching and replacement, such as theSubstitutecommand.
For example, the command

“Substitute MYTHREAD pid”

replaces any occurrence ofMYTHREAD in the UPC code with
pid in the model, wherepid captures a unique identifier for each
proctype in Promela. There is also anImport command that in-
cludes the data objectsname from the UPC source code inside the
Promela model with the global scope or the scope of a specific
proctype in Promela.

Table 1. Sample Abstraction Commands
Command Meaning

skip Replace with a null operation
hide Conceal in the model
keep Preserve in the model

SubstituteP1 P2 Substitute any occurrence ofP1 with P2

Import name scope Includename with a scope of ‘scope’

We present the following abstraction rules for model generation
from UPC programs (see [6] for more rules):
Rule 1: upc lock() Theupc lock(upc lock t *lk) function locks a
sharedvariable of typeupc lock t. If the lock is already acquired
by some thread, the calling thread waits for the lock to be released.
Otherwise, the calling thread acquires the lock*lk atomically. The
corresponding Promela code is as follows:

1 bool lk; // Global lock variable
2 atomic{ !lk -> lk=true; }

Line 2 represents an atomic guarded command in Promela that
sets the lock variablelk to true (i.e., acquireslk) if lk is available.
Otherwise, the atomic guarded command is blocked.
Rule 2: upc unlock() Theupc unlock(upc lock t *lk) is translated
to an assignmentlk = false in Promela. Assignments are executed
atomically in Promela.



Rule 3: upc notify We use two global integer variablesbarr and
proc to implement the semantics ofupc notify in Promela. Initially,
the value ofbarr is equal toTHREADS. To demonstrate that it has
reached a notify statement, each threadatomicallydecrements the
value of barr and sets the flagproc to zero. Notice thatbarr and
proc are updated atomically because they are shared variables in
the model and a non-atomic update may cause data races.

1 atomic{ barr = barr -1; proc=0;}

Rule 4: upc wait Once reached aupc wait statement, a thread
waits until the value ofbarr becomes zero; i.e., all threads have
reached their notify statement in the current synchronization phase.
The value ofproc is set to 1 indicating that some thread has ob-
served thatbarr has become zero. Afterwards, each thread incre-
mentsbarr and waits until all threads incrementbarr or some thread
has witnessed thatbarr has become equal toTHREADS in the cur-
rent phase (i.e.,proc has been set to 0).

1 (barr == 0) || (proc == 1) -> proc = 1;
2 barr = barr + 1;
3 (barr == THREADS) || (proc == 0) -> proc = 0;

Rule 5: (Split-Phase) upcbarrier The upc barrier is in fact the
union of a pair ofupc notify and upc wait statements. Separate
use ofupc notify andupc wait implements the split-phase barrier
synchronization. Split-phase barrier can reduce the busy-waiting
overhead of barrier synchronizations by allowing each thread to
perform some local computations between the time it reachesa
notify statement and the time it reaches a wait statement.
Rule 6: upc forall To model the work-sharing iteration statement
upc forall in Promela, we first explain how regular for-loops in C
are modeled by ModEx. Then, we describe how we extract Promela
models fromupc forall statements. Consider a C for-loop “for (init;
cond; cntr update){ stmtBlk;}”, whereinit denotes the initialization
of the loop counter, thecond represents the termination condition,
cnt update updates the loop counter andstmtBlk is the statement
block in the loop body. The following Promela statements model
such a C for-loop.

1 init;
2 do
3 :: (cond) -> {stmtBlk; update_cntr;}
4 :: else -> break;
5 od;

Line 1 initializes the loop counter and thedo-od loop captures
the control logic of the for-loop. That is, if the conditioncond
holds, then the loop body is executed and the loop counter is up-
dated. Otherwise, thedo-od loop breaks out. Theupc forall state-
ment distributes the loop iterations amongst the threads based on
an affinity expression “for (init; cond; cntr update; affinity expr){
stmtBlk;}”. If affinity expr is equal to ‘continue’ or is unspecified,
then the model generated forupc forall is similar to a regular C for-
loop. Otherwise,affinity expr could be either an integer expression
intExpr or a reference to thek-th element of a shared array. For the
first case, we have the following piece of code instead of Line3 of
the abovedo-od loop.

:: (cond) -> {if ( pid == intExpr){ stmtBlk; }
update_cntr;}

For the second case, consider a shared array declared as “shared
[block-size] array A[number-of-elements]”. Since UPC distributes
the elements of the arrayA in the shared memory space in a round
robin fashion where at leastblock-size elements are associated with
the affinity of each thread, we generate the following Promela code
when thek-th element of the arrayA is referenced inaffinity expr:

:: (cond) -> {if ( pid == ((k/block-size)%THREADS)){
stmtBlk; } update_cntr;}

3.3 Abstracting Shared Data Accesses
In the model checking of concurrent programs for data race-
freedom, the objective is to check whether or not multiple threads
have simultaneous access to shared data where at least one thread
performs a write operation. Thus, the contents of shared variables
and the way it is accessed (i.e., via pointers or by name) are irrele-
vant to verification; rather it is the type of read/write operation on
the shared data that should be captured in a model. For this reason,
corresponding to each shared variablex, we consider two bits in
the Promela model; one represents whether a read operation is be-
ing performed onx and the other captures the fact thatx is being
written. Accordingly, if a shared array is used in the UPC program,
its corresponding model will include two bit-arrays. For example,
corresponding to the arrayA in Figure 2, we consider the following
bit arrays in its Promela model:

1 bit read_A[THREADS];
2 bit write_A[THREADS];

The bit read A[i] (for 0 ≤ i ≤ THREADS−1) is 1 if and only
if a read operation is performed onA[i]. Likewise, write A[i] is
1 if and only if A[i] is written. Thus, corresponding to any read
(respectively, write) operation onA[i] in the UPC code, we set
read A[i] (respectively,write A[i]) to 1 in the Promela model.

3.4 Example: Promela Model of Integer Permutation
For model extraction, UPC-ModEx needs two input files: the input
UPC program and a text file that contains the abstraction LUT.
Figure 3 illustrates the LUT for the program in Figure 2:

1 %F Locks.c
2 %X -L main.lut
3 %L
4 Import i main
5 Import s main
6 Substitute MYTHREAD _pid
7 A[i] = i hide
8 upc_barrier atomic{ barr = barr -1; proc=0;}
9 (barr == 0) || (proc == 1) -> proc = 1;

10 barr = barr + 1 ;
11 (barr == THREADS)||(proc == 0)-> proc = 0;
12 s=((int )lrand48()... select(s: 0 .. THREADS-1)
13 upc_lock(lk[i]) atomic{ !lk[i] -> lk[i] = true }
14 upc_lock(lk[s]) atomic{ !lk[s] -> lk[s] = true }
15 upc_unlock(lk[i]) lk[i] = false
16 upc_unlock(lk[s]) lk[s] = false
17 t=A[i] read_A[i]=1;
18 read_A[i]=0;
19 A[i]=A[s] read_A[s]=1;
20 read_A[s]=0;
21 write_A[i]=1;
22 write_A[i]=0;
23 A[s]=t write_A[s]=1;
24 write_A[s]=0;

Figure 3. The abstraction file for the program in Figure 2, where
THREADS = 4.

While the commands used in this file are taken from ModEx,
the abstraction rules that specify how a model is generated from the
UPC program are our contributions. The first line in Figure 3 (i.e.,
command%F) specifies the name of the source file from which we
want to extract a model. Line 2 (i.e., command%X) expresses that
UPC-ModEx should extract a model of themain function using the
subsequent abstraction rules. Line 3 (i.e., command%L) denotes
the start of the look-up table that is used for model extraction. Lines
4 and 5 define that the variablesi ands should be included as lo-
cal variables in theproctype that is generated corresponding to the
main function of the source code. Since the contents of arrayA is ir-
relevant to the verification of data race/deadlock-freedom, we hide
the statementA[i] = i in the model, wherei is set toMYTHREAD.
We apply Rule 5 (presented in Section 3.2) for the abstraction of



upc barrier (Lines 8-11 in Figure 3). Line 14 of Figure 2 (i.e.,s =
(int)lrand48() % (THREADS)) assigns a randomly-selected integer
(between0 andTHREADS−1) to variables. The semantics of Line
14 is captured by a ‘select(v : L..H)’ statement in Promela (e.g.,
Line 12 in Figure 3), where a random number betweenL andH
(inclusive) is assigned to variablev. The value of the variables
determines the array cell with which the value ofA[i] should be
swapped by threadi. Lines 13-16 include the rules for the abstrac-
tion of upc lock() andupc unlock() functions. Lines 17-24 illustrate
the rules used to abstract read/write accesses to shared data (as ex-
plained in Section 3.3). For example, the assignmentA[i] = A[s]
in UPC is translated to four assignments demonstrating howA[s]
is read andA[i] is written.

Taking the program in Figure 2 and the abstraction file of Figure
3, UPC-ModEx generates the Promela model in Figure 4. Lines 1-
6 have been added manually. Line 1 defines a macro that captures
the system constantTHREADS; in this case 4 threads. Lines 2-6
declare global shared variables that are accessed by allproctypes
in the model. The prefixactive in Line 8 means that a set of
processes are declared that areactive (i.e., running) in the initial
state of the model. The suffix[THREADS] specifies the number
of instances of themain proctype that are created by SPIN. Lines
11-14 implementupc barrier. Each proctype randomly assigns a
value between0 andTHREADS−1 to variables (Line 17) and then
performs the swapping in either one of theif-statements in Lines 18
or 34. The automatically-generated line numbers that are written as
comments associate the instructions in the UPC source code with
the statements in the model.

4. Model Checking with SPIN
In order to verify a model with respect to a property, we first have
to specify the property in terms of the data flow or the control
flow of the model (or both). For example, to verify the model of
Figure 4 for lack of simultaneous read and write operations,we first
determine the conditions under which a shared datum is read and
written by multiple threads at the same time. (Section 5 illustrates
a case where we verify freedom from simultaneous writes.) Using
the abstractions defined for shared data accesses in Section3.3, we
define the following macro for the Promela model of Figure 4:

1 #define race_0 (read_A[0] && write_A[0])

The macrorace 0 defines conditions under which the array
cell A[0] is read and written at the same time; i.e., there is a
race condition onA[0]. Likewise, we define macros representing
race conditions for other cells of arrayA. To express data race-
freedom in SPIN, we specify the temporal logic expression�
!race 0 meaning thatit is always the case that the condition race0
is false. The data race-freedom in this case is guaranteed by the use
of upc lock statements in Lines 17-18 and 27-28 in Figure 2, which
are translated as Lines 19-20 and 35-36 in Figure 4. Nonetheless,
the use of locks often causes deadlocks in concurrent programs due
to circular waiting of threads for shared locks. To verify deadlock-
freedom, we must make sure that each thread eventually terminates;
i.e., eventually reaches Line 50 of Figure 4. To specify thisproperty,
we define the following macros:

1 #define fin_0 (main[0]@P)

The macrofin 0 is defined in terms of the control flow of the
first instance of themain proctype, denotedmain[0], which means
that thread 0 is at the label P (inserted in Line 50). Thus, if thread
0 eventually reaches its last statement (which is a null operation
in Promela denoted byskip), then it is definitely not deadlocked.
Such a property is specified as the temporal logic expression♦

fin 0, where♦ denotes the eventuality operator in temporal logic.
SPIN verifies the integer permutation program with respect to data
race-freedom and deadlock-freedom properties.

1 #define THREADS 4
2 int barr = THREADS;
3 int proc = 0;
4 bool lk[THREADS];
5 bit read_A[THREADS];
6 bit write_A[THREADS];
7

8 active [THREADS] proctype main() {
9 int i, s;

10 i=_pid; /* line 42 */
11 atomic{ barr = barr -1; proc=0; } /* line 39 */
12 (barr == 0) || (proc == 1) -> proc = 1;
13 barr = barr + 1;
14 (barr == THREADS) || (proc == 0) -> proc = 0;
15 /* line 44 */
16

17 select(s: 0 .. THREADS-1);
18 if :: (s<i) -> { /* line 54 */
19 atomic{ !lk[i] -> lk[i] = 1 }; /* line 59 */
20 atomic{ !lk[s] -> lk[s] = 1 }; /* line 60 */
21 read_A[i]=1; /* line 62 */
22 read_A[i]=0;
23 read_A[s]=1; /* line 63 */
24 read_A[s]=0;
25 write_A[i]=1;
26 write_A[i]=0;
27 write_A[s]=1; /* line 64 */
28 write_A[s]=0;
29 lk[i] = 0; /* line 66 */
30 lk[s] = 0; /* line 67 */
31 }
32 :: else; /* line 67 */
33 fi;
34 if :: (s>i) -> { /* line 67 */
35 atomic{ !lk[s] -> lk[s] = 1 }; /* line 70 */
36 atomic{ !lk[i] -> lk[i] = 1 }; /* line 71 */
37 read_A[i]=1; /* line 73 */
38 read_A[i]=0;
39 read_A[s]=1; /* line 74 */
40 read_A[s]=0;
41 write_A[i]=1;
42 write_A[i]=0;
43 write_A[s]=1; /* line 75 */
44 write_A[s]=0;
45 lk[i] = 0; /* line 77 */
46 lk[s] = 0; /* line 78 */
47 }
48 :: else; /* line 78 */
49 fi;
50 P: skip; }

Figure 4. The Promela model generated for the program in Figure 2.

4.1 Example: Heat Flow
The Heat Flow (HF) program includesTHREADS>1 threads and
a shared arrayt of sizeTHREADS×regLen, whereregLen > 1
is the length of a region vector accessible to each thread. That is,
each threadi (0 ≤ i ≤ THREADS−1) has read/write access to
array cellst[i ∗ regLen] up to t[((i + 1) ∗ regLen) − 1]. The
shared arrayt captures the transfer of heat in a metal rod and the
HF program models the heat flow in the rod. Figure 5 presents an
excerpt of the UPC code of HF.

Each thread performs some local computations and then all
threads synchronize with theupc barrier in Line 5. The base of the
region of each thread is computed byMYTHREAD∗ regLen in Line
6. Each thread continuously executes the code in Lines 7 to 26. In
Lines 8-11, the local value oftmp[0] is initialized. Then, in Lines 12
to 16, each threadi, where0 ≤ i ≤ THREADS−1, first computes
the heat intensity of the cellst[base] to t[base + regLen − 3]
in its own region. Subsequently, every thread, except the last one,
updates the heat intensity oft[base+ regLen− 1] (see Lines 17-



1 shared double t[regLen*THREADS];
2 double tmp[2];
3 double e, etmp;
4 . . . // Perform some local computations
5 upc_barrier;
6 base = MYTHREAD*regLen;
7 for (j =0; j < regLen+1; j++) {
8 if (MYTHREAD == 0) { tmp[0] = t[0]; }
9 else {

10 tmp[0] = (t[base-1] + t[base] + t[base+1])/3.0;
11 e = fabs(t[base]-tmp[0]); }
12 for (i=base+1; i<base+regLen-1; ++i) {
13 tmp[1] = (t[i-1] + t[i] + t[i+1]) / 3.0;
14 etmp = fabs(t[i]-tmp[1]);
15 t[i-1] = tmp[0];
16 }
17 if (MYTHREAD < THREADS-1) {
18 tmp[1] = (t[base+regLen-2] +
19 t[base+regLen-1] +
20 t[base+regLen]) / 3.0;
21 etmp = fabs(t[base+regLen-1]-tmp[1]);
22 t[base+regLen-1] = tmp[1];
23 }
24 upc_barrier;
25 t[base+regLen-2] = tmp[0];
26 }

Figure 5. Excerpt of the Heat Flow (HF) program in UPC.

23). Before updatingt[base+ regLen− 2] in Line 25, all threads
synchronize usingupc barrier. Our objective is to verify whether or
not there are any simultaneous read-write operations in HF.Since
no thread writes in another thread’s region, no simultaneous writes
occur. The significance of this example is that the access to shared
data is changed dynamically as each thread updates the valueof
heat flow. Moreover, despite the small number of lines of codein
this example, it is difficult tomanuallyidentify where the data races
may occur.

Abstraction Look-Up Table (LUT) for HF. We present the ab-
straction LUT of the HF program below. Lines 1-7 of the table
include the local data and simple mapping rules. The rest of the
abstraction table includes 11 entries located in Lines 8, 10, 14, 21,
24, 31, 33, 35, 38, 40 and 42. Each entry includes a left-hand side
and a right-hand side defined based on the rules presented in Sec-
tions 3.2 and 3.3. Hence, we omit the explanation of the abstraction
rules of the HF program. Notice that the arraysread t andwrite t
have been declared for the abstraction of data accesses to the shared
arrayt (as explained in Section 3.3).

1 %F fwup.c
2 %X -L main.lut
3 %L
4 Import i main
5 Import j main
6 Import base main
7 Substitute MYTHREAD _pid
8 tmp[0]=t[0] read_t[0]=1;
9 read_t[0]=0;

10 upc_barrier atomic barr = barr -1; proc=0;
11 (barr == 0) || (proc == 1) -> proc = 1;
12 barr = barr + 1 ;
13 (barr==THREADS)||(proc==0) -> proc = 0;
14 tmp[0]=(((t[(base-1)]+t[base])+t[(base+1)])/3)
15 read_t[base-1] = 1;
16 read_t[base-1] = 0;
17 read_t[base] = 1;
18 read_t[base] = 0;
19 read_t[base+1] = 1;
20 read_t[base+1] = 0;
21 e=fabs((t[base]-tmp[0])) read_t[base]=1;
22 read_t[base]=0;
23

24 tmp[1]=(((t[(i-1)]+t[i])+
25 t[(i+1)])/3) read_t[i-1] = 1;
26 read_t[i-1] = 0;
27 read_t[i] = 1;
28 read_t[i] = 0;
29 read_t[i+1] = 1;
30 read_t[i+1] = 0;
31 etmp=fabs((t[i]-tmp[1])) read_t[base]=1;
32 read_t[base]=0;
33 t[(i-1)]=tmp[0] write_t[i-1] = 1;
34 write_t[i-1] = 0;
35 etmp=fabs((t[((base+regLen)-1)]-tmp[1]))
36 read_t[((base+regLen)-1)]=1;
37 read_t[((base+regLen)-1)]=0;
38 t[((base+regLen)-1)]=tmp[1] write_t[((base+regLen)-1)]=1;
39 write_t[((base+regLen)-1)]=0;
40 t[((base+regLen)-2)]=tmp[0] write_t[base+regLen-2]=1;
41 write_t[base+regLen-2]=0;
42 tmp[1]=(((t[((base+regLen)-2)]+ t[((base+regLen)-1)])
43 +t[(base+regLen)])/3) read_t[((base+regLen)-2)] = 1;
44 read_t[((base+regLen)-2)] = 0;
45 read_t[((base+regLen)-1)] = 1;
46 read_t[((base+regLen)-1)] = 0;
47 read_t[(base+regLen)] = 1;
48 read_t[(base+regLen)] = 0;

The Promela model of HF.UPC-ModEx generates the following
Promela model for the HF program using its abstraction LUT. This
is an instance with 3 threads and region size of 3 for each thread.
The SPIN model checker createsTHREADS instances of themain
proctype as declared in Line 8. We omit the explanation of the
Promela model of HF as it has been generated with the rules defined
in Sections 3.2 and 3.3.

1 #define regLen 3
2 #define THREADS 3
3 int barr = THREADS;
4 int proc = 0;
5 bit read_t[regLen * THREADS];
6 bit write_t[regLen * THREADS];
7

8 active [THREADS] proctype main() {
9 int base ; /* mapped */

10 int i ; /* mapped */
11 int j ; /* mapped */
12 atomic{ barr = barr -1; proc=0; } /* line 50 */
13 (barr == 0) || (proc == 1) -> proc = 1;
14 barr = barr + 1 ;
15 (barr == THREADS) || (proc == 0) -> proc = 0;
16 base = _pid * regLen; /* line 55 */
17 j=0; /* line 60 */
18L_0: do
19 :: (j<(regLen +1)) -> { /* line 60 */
20 if :: (_pid==0) /* line 60 */
21 read_t[0]=1; read_t[0]=0; /* line 64 */
22 :: else; /* line 64 */
23 read_t[base-1] = 1; read_t[base-1] = 0;
24 read_t[base] = 1; read_t[base] = 0;
25 read_t[base+1] = 1; read_t[base+1] = 0;
26 /* line 68 */
27 read_t[base]=1; read_t[base]=0; /* line 69 */
28 fi;
29 i = base +1; /* line 71 */
30L_1: do
31 :: (i < base+regLen-1) -> {
32 read_t[i-1] = 1; read_t[i-1] = 0;
33 read_t[i] = 1; read_t[i] = 0;
34 read_t[i+1] = 1; read_t[i+1] = 0;
35 /* line 73 */
36 read_t[base]=1; read_t[base]=0; /* line 74 */
37 write_t[i-1] = 1; write_t[i-1] = 0; /* line 76 */
38 i = i +1; /* line 76 */
39 }



40 :: else -> break /* line 76 */
41 od;
42 if :: (_pid<(THREADS-1)) /* line 76 */
43 read_t[((base+regLen)-2)] = 1; /* line 81 */
44 read_t[((base+regLen)-2)] = 0;
45 read_t[((base+regLen)-1)] = 1;
46 read_t[((base+regLen)-1)] = 0;
47 read_t[(base+regLen)] = 1;
48 read_t[(base+regLen)] = 0;
49 read_t[((base+regLen)-1)]=1; /* line 83 */
50 read_t[((base+regLen)-1)]=0;
51 write_t[((base+regLen)-1)]=1; /* line 87 */
52 write_t[((base+regLen)-1)]=0;
53 :: else; /* line 87 */
54 fi;
55 atomic{barr = barr -1; proc=0;} /* line 89 */
56 (barr == 0) || (proc == 1) -> proc = 1;
57 barr = barr + 1 ;
58 (barr == THREADS) || (proc == 0) -> proc = 0;
59 write_t[base+regLen-2]=1;
60 write_t[base+regLen-2]=0; /* line 91 */
61 j = j +1 ; /* line 91 */
62 }
63 :: else -> break /* line 91 */
64 od;
65}

Model checking for data race-freedom.We specify data race
conditions where at least a write operation is performed simulta-
neously with multiple reads as the following macros (0 ≤ i ≤
THREADS∗regLen−1):

1 #define race_i (read_t[i] && write_t[i])

To verify data race-freedom, we use SPIN to check whether the
following property is correct:it is always the case that there are
no simultaneous reads and writes on array cellt[i]. This parame-
terized property is formally expressed as�¬ racei. We verify the
model of the HF program for data race-freedom on all memory cells
of arrayt; i.e.,0 ≤ i ≤ THREADS∗regLen−1. For an instance of
the model whereTHREADS= 3 and regLen= 3, SPIN finds data
races on the boundary array cells. That is, there are data races on
t[2], t[3], t[5] andt[6].

Counterexamples.SPIN returns a counterexample, where a read
in Line 23 and a write in Line 51 of the above Promela model oc-
cur simultaneously. Specifically, this counterexample demonstrates
that while Thread 0 is writingt[2] in Line 51, Thread 1 could be
readingt[2] in Line 23. The translation of this counterexample in
the source code is that a data race occurs ont[2] when thread 0
is writing t[2] in Line 22 of Figure 5 and thread 1 is readingt[2]
in Line 10 of Figure 5. Another data race occurs when threadi is
writing its t[base] in Line 15 of Figure 5 in the first iteration of the
for-loop of Line 12, and threadi − 1 is readingt[base+regLen] in
Line 20, for1 ≤ i ≤ THREADS−1. This example illustrates how
model checking could simplify the detection of data races. These
data races can be corrected by using lock variables in appropriate
places in the code.

5. Case Study: Model Checking the Conjugate
Gradient Kernel of NPB

This section presents a case study on verifying the data race-
freedom and deadlock-freedom of a UPC implementation of the
CG kernel of the NPB benchmark (taken from [24]). The NPB
benchmarks provide a set of core example applications, calledker-
nels, that are used to evaluate the performance of highly parallel
supercomputers. The kernels of NPB test different types of appli-
cations in terms of their patterns of data access and inter-thread
communication. Since the PGAS model is appropriate for solving
problems that have irregular data accesses, we select the CGker-

nel of NPB that implements the conjugate gradient method by the
inverse power method (which has an irregular data access pattern).
Another interesting feature of CG is the use of a two-dimensional
array in the affinity of each thread and the way array cells areac-
cessed. To the best of our knowledge, this section presents the first
attempt at mechanical verification of CG. Figure 6 demonstrates
the inter-thread synchronization functionalities of CG.

1 struct cg_reduce_s { double v[2][NUM_PROC_COLS]; };
2 typedef struct cg_reduce_s cg_reduce_t;
3 shared cg_reduce_t sh_reduce[THREADS];
4

5 int main(int argc, char **argv) {
6 // declaration of local variable
7 // Initialization
8 upc_barrier;
9 // Perform one (untimed) iteration to

10 // initialize code and data page tables
11 /* The call to the conjugate gradient routine*/
12 conj_grad( . . . );
13 reduce_sum_2( . . . );
14 // post-processing
15 upc_barrier;
16 /* Main Iteration for inverse power method*/
17 for (it = 1; it <= NITER; it++) {
18 conj_grad( . . . );
19 reduce_sum_2( . . . );
20 // post-processing
21 }
22 upc_barrier;
23 // Thread 0 prints the results
24}
25

26 void reduce_sum_2( double rs_a, double rs_b ) {
27 int rs_i;
28 int rs_o;
29

30 upc_barrier;
31 rs_o = (nr_row * NUM_PROC_COLS);
32 for( rs_i=rs_o; rs_i<(rs_o+NUM_PROC_COLS); rs_i++ ){
33 sh_reduce[rs_i].v[0][MYTHREAD-rs_o] = rs_a;
34 sh_reduce[rs_i].v[1][MYTHREAD-rs_o] = rs_b; }
35 upc_barrier;
36}

Figure 6. Inter-thread synchronization functionalities of the Conjugate
Gradient (CG) kernel of the NPB benchmarks.

The first three lines in Figure 6 define a data structure that is
used to store the results of computations in a collective reduce
fashion. Thecg reduce s structure captures a two dimensional vec-
tor, and the shared arraysh reduce defines a two dimensional vec-
tor in the affinity of each thread. After performing some local ini-
tializations, all threads synchronize usingupc barrier in Line 8 of
Figure 6. Then an untimed iteration of the inverse power method
is executed (Lines 9-10) before all threads synchronize again.
The reduce sum 2 routine distributes the results in the shared ad-
dress space. Thefor-loop in Line 17 implements the inverse power
method. Afterwards, all threads synchronize in Line 22, andthen
Thread 0 prints out the results. The main difficulty is in the way we
abstract the pattern of data accesses inreduce sum 2.
Abstraction. To capture the way write operations are performed,
we consider the following abstract data structures in the Promela
model corresponding tosh reduce:

1 typedef bitValStruc { bit b[NUM_PROC_COLS] };
2 typedef bitStruc { bitValStruc v[2] };
3 bitStruc write_sh_reduce[THREADS];

Lines 1-2 above define a two dimensional bit array (of type
bitStruc) in Promela and Line 3 declares a bit array ofbitStruc with
sizeTHREADS. Next, we abstract thefor-loop of reduce sum 2 in
Promela as follows:



1 rso = (_pid / NUM_PROC_COLS) * NUM_PROC_COLS;
2 rsi = rso;
3 do
4 :: (rsi < rso + NUM_PROC_COLS) -> {
5 write_sh_reduce[rsi].v[0].b[_pid-rso] = 1;
6 write_sh_reduce[rsi].v[0].b[_pid-rso] = 0;
7 write_sh_reduce[rsi].v[1].b[_pid-rso] = 1;
8 write_sh_reduce[rsi].v[1].b[_pid-rso] = 0;
9 rsi = rsi + 1; }

10 :: !(rsi < rso + NUM_PROC_COLS) -> break;
11 od;

Observe that any write operation has been modeled by setting
and resetting the corresponding bit in the arraywrite sh reduce.
Model checking CG for data race-freedom.Since the results of
local computations are written in shared memory, we only verify
freedom from simultaneous writes. Specifically, we verify that be-
fore setting a bit in the arraywrite sh reduce, that bit is not already
set by another thread. We insert anassertstatement (Lines 3 and
7 below) that verifies data race-freedom. While model checking,
SPIN verifies that the assertions hold. In the case of CG for 2,3
and 4 threads, we found no simultaneous writes.

1 do
2 :: (rsi < rso + NUM_PROC_COLS) -> {
3 assert(write sh reduce[rsi].v[0].b[ pid-rso] != 1);
4 write_sh_reduce[rsi].v[0].b[_pid-rso] = 1;
5 write_sh_reduce[rsi].v[0].b[_pid-rso] = 0;
6

7 assert(write sh reduce[rsi].v[1].b[ pid-rso] != 1);
8 write_sh_reduce[rsi].v[1].b[_pid-rso] = 1;
9 write_sh_reduce[rsi].v[1].b[_pid-rso] = 0;

10 rsi = rsi + 1; }
11 :: !(rsi < rso + NUM_PROC_COLS) -> break;
12 od;

Model checking CG for deadlock-freedom.To make sure that
each thread eventually terminates, we insert a label “fin:” for a
null operationskipas the last operation in the body of each thread
(similar to the label P in Line 50 of Figure 4). Then we define the
following macro:

1 #define fin_0 (main[0]@fin)

We use similar macros to specify a progress property as♦ fin i
for each threadi stating that each thread will eventually terminate;
i.e., will not deadlock. SPIN verified that each thread terminates for
instances of the CG kernel with 2, 3 and 4 threads.

6. Experimental Results
In order to give a measure of the time/space cost of model check-
ing, this section presents our experimental results for themodel
checking of the integer permutation program in Figure 2, theHeat
Flow program in Figure 5 and the CG program in Figure 6. The
platform of model checking is a HP Tablet PC with an Intel Dual
Core Processor T5600 (1.83 GHz) and 1GB memory available for
model checking.
Model checking of integer permutation.We have model checked
the integer permutation program of Figure 2 for data race-freedom
and deadlock-freedom, where3 ≤ THREADS ≤ 5 (see Table 2).

Property # Threads Time (Sec.) # States
Data Race-Freedom 3 0.047 33,189
Data Race-Freedom 4 5.11 2,656,001
Deadlock-Freedom 3 0.125 67,296
Deadlock-Freedom 4 12.4 2,681,440

Table 2. Time/Space costs of the model checking of Integer Per-
mutation.

Verifying data race-freedom took 0.047 and 5.11 seconds re-
spectively for models with 3 and 4 threads. The model checking
of thread termination needs more time since the algorithm for the

model checking of progress properties is more complex; we spent
0.125 and 12.4 seconds for instances with 3 and 4 threads. SPIN ex-
plored 2.7 million states in the model checking of integer permuta-
tion for 4 threads. ForTHREADS= 5, model checking of both data
race-freedom and deadlock-freedom took much longer and eventu-
ally failed due to insufficient memory.
Model checking of heat flow. Table 3 summarizes our results
for the model checking of HF. For 3 threads and region size 3,
the model checking took 0.8 seconds for cases where the model
satisfied data race-freedom, called thesuccess cases, and 0.171 Sec.
for cases where the model violates the data race-freedom, called the
failure cases(e.g., accessing the array cells that are on the boundary
of two neighboring regions). Once a failure is found, SPIN stops
and provides a counterexample, thereby avoiding the exploration
of the unexplored reachable states. For this reason, the verification
of failure cases takes less time. For 4 threads and region size 3,
model checking took 20.5 seconds for success cases and 0.171for
failure cases. For 5 threads, SPIN failed to give any resultsdue to
memory constraints.

To investigate the impact of the region size on the time complex-
ity of model checking, we increased the region size for the case of
THREADS= 3 (see Table 3). The time increase in failure cases is
negligible. Observe that, increasing the number of threadsraises the
model checking time exponentially, whereas the region sizecauses
an almost linear increase. This is because increasing the number of
threads exponentially increases the number of reachable states due
to the combinatorial nature of all possible thread interleavings.

# Threads Region Size Time (Sec.) # States
3 3 0.8 166,740
3 4 2.14 440,852
3 5 5 960,248
3 6 5.19 1,838,224
3 7 9.53 3,209,852
3 8 16.9 5,231,708
3 9 25.1 8,081,872
3 10 37.5 11,959,928
4 3 20.5 6,680,083

Table 3. Time/Space costs of the model checking of Heat Flow for
data race-freedom.

In terms of space complexity, SPIN explored almost 11.96 mil-
lion states for the model checking of an instance of the heat flow
model with 3 threads and the region size of 10. Nonetheless, for an
instance with 4 threads and region size 3, SPIN explored 6.7 mil-
lion states. The verification of an instance with 5 threads and the
region size 3 failed due to insufficient memory.
Model checking of CG.For 2 threads, the time spent for the model
checking of assertion violation is negligible. For deadlock-freedom
of each thread, SPIN needed 0.015 seconds. The model checking of
assertion violations for 3 and 4 threads respectively required 0.031
and 3.17 seconds and SPIN spent 0.4 and 17.5 for the verification
of deadlock-freedom for 3 and 4 threads respectively (see Table
4). The model checking of the CG model with 5 threads was
inconclusive due to memory constraints. To verify an instance with
4 threads, SPIN explored almost 3 million states.

Property # Threads Time (Sec.) # States
Data Race-Freedom 3 0.031 19,894
Data Race-Freedom 4 3.17 1,299,858
Deadlock-Freedom 3 0.4 45,282
Deadlock-Freedom 4 17.5 2,988,522

Table 4. Time/Space costs of the model checking of Conjugate
Gradient.



7. Conclusions and Future Work
We presented a framework, called UPC-SPIN (see Figure 1), for
the model checking of UPC programs. The proposed framework
requires programmers to create a tabled abstraction file that spec-
ifies how different UPC constructs should be modeled in Promela
[10], which is the modeling language of the SPIN model checker
[11]. We presented a set of built-in rules that enable the abstrac-
tion of UPC synchronization primitives in Promela. The UPC-SPIN
framework includes a front-end compiler, called the UPC Model
Extractor (UPC-ModEx), that generates finite models of UPC pro-
grams, and a back-end that uses SPIN to verify models of UPC
programs for properties of interest. Using UPC-SPIN, we have ver-
ified several real-world UPC programs including parallel bubble
sort, heat flow in metal rods, integer permutation and parallel data
collection (see [6] for details). Our verification attemptshave both
mechanically verified the correctness of programs and have also
revealed several concurrency failures (i.e., data races and dead-
locks/livelocks). For instance, we have detected data races in a pro-
gram that models heat flow in metal rods (see Section 4.1). More
importantly, we have generated a finite model of a UPC implemen-
tation of the Conjugate Gradient (CG) kernel of the NAS Parallel
Benchmarks (NPB) [24], and have mechanically demonstratedits
correctness for data race-freedom and deadlock-freedom. We have
illustrated that even though we verify models of UPC programs
with a few threads, it is difficult tomanuallydetect the concurrency
failures that are detected by the UPC-SPIN framework. Moreover,
since SPIN exhaustively checks all reachable states of a model,
such failures certainly exists in model instances with larger num-
bers of threads.

There are several extension to this work. First, we would like
to devise abstractions rules for all UPC collectives and implement
them in UPC-ModEx, which is the model extractor of UPC-SPIN.
Second, to scale up the time/space efficiency of model checking, we
are currently working on integrating a swarm platform for model
checking [15] in the UPC-SPIN framework so that we can exploit
the processing power of computer clusters for the model checking
of UPC applications. Third, we plan to investigate the modelcheck-
ing of UPC programs in the relaxed memory consistency model.
Last but not least, we believe that a similar approach can be taken
to facilitate the model checking of other PGAS languages.
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