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Abstract

This paper presents a software framework for the model ¢hgck
of the inter-thread synchronization functionalities ofified Paral-

lel C (UPC) programs. The proposed framework includes afron
end compiler that generates finite models of UPC programisen t
modeling language of the SPIN model checker. The model gener
ation is based on a set of abstraction rules that transfoen#C
synchronization primitives to semantically-equivalewide snip-
pets in SPIN’s modeling language. The back-end includeNSPI
that verifies the generated model. If the model checkingesats,
then the UPC program is correct with respect to propertiéstef-
est such as data race-freedom and/or deadlock-freedorndse,
the back-end provides feedbacksexjuences of UPC instructions
that lead to a data race or a deadlock from initial stateslled
counterexamplesUsing the UPC-SPIN framework, we have de-
tected design flaws in several real-world UPC applicatiordyd-
ing a program simulating heat flow in metal rods, paralleltdab
sort, parallel data collection, and an integer permutagpi@gram.
More importantly, for the first time (to the best of our knodge),
we have mechanically verified data race-freedom and deadloc
freedom in a UPC implementation of the Conjugate Gradie@®)(C
kernel of the NAS Parallel Benchmarks (NPB). We believe that
UPC-SPIN provides a valuable tool for developers towardeeiss-
ing their confidence in the computational results generayddPC
applications.

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Program Verification; D.2.53oftware EngineerirfjgTesting
and Debugging

General Terms High Performance Computing, Verification
Keywords PGAS, UPC, Model Checking

1. Introduction

The dependability of High Performance Computing (HPC)-soft
ware is of paramount importance as researchers and enginser
HPC in critical domains of application (e.g., weather siatiains,
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bio-electromagnetic modeling of human body, etc.) wherggte
flaws may mislead scientists’ observations. As such, we teed
increase the confidence of developers in the accuracy of atamp
tional results. One way to achieve this goal is to devisertiegles
and tools that facilitate the detection and correction ofotorency
failures such as data races, deadlocks and livelocks. Due to the
inherent non-determinism of HPC applications, softwarstirig
methods often fail to uncover concurrency failures as itracg
tically expensive (if not impossible) to check all possiliger-
leavings of threads of execution. An alternative methochael
checking [4, 11, 18] where we generafmite modelf programs
that represent a specific behavioral aspect (e.g., inteathsyn-
chronization functionalities), and exhaustively verifyyiaterleav-
ings of the finite model with respect to a property of intelesy.,
data race/deadlock-freedom). This paper presents a namekf
work (see Figure 1) for model extraction and model checkihg o
the Partitioned Global Address Space (PGAS) applicati@veld
oped in Unified Parallel C (UPC).

While many HPC applications are developed using the Message
Passing Interface (MPI) [9], there are important scienat engi-
neering problems that can be solved more efficiently in aezhar
memory model in part because the pattern of data access by ind
pendent threads of execution is irregular (e.g., the weigjhtatch-
ing problem [3, 17, 23]). As such, while there are tools fog th
model checking of MPI applications [20, 22, 25], we wouldelik
to enable the model checking of PGAS applications. The PGAS
memory model aims at simplifying programming and incregsin
performance by exploiting data locality in a shared addsesse.

This paper presents a framework, called UPC-SPIN (see&igur
1), for model extraction and model checking of UPC applarai
using the SPIN model checker [11], thereby facilitatinggaating
the debugging of concurrency failures. UPC is a variant ef@h
programming language that supports the Single Programipult
Data (SPMD) computation model with the PGAS memory model.
UPC has been publicly available for many years and so many HPC
users have experience with it. The proposed framework (&ge F
ure 1) requires programmers ieanuallyspecify abstraction rules
for model extraction in a Look-Up Table (LUT). Such abstiact
rules are property-dependent in that for the same prograhuign
ferent properties/requirements (e.g., data race-freedesudlock-
freedom), we may need to specify different abstractionsiuldne
abstraction rules specify how relevant UPC constructs apéuced
in the modeling language of the SPIN model checker [11]. Afte
creating a LUT, UPC-SPIN automatically extracts a finite elod

1in the context of dependable systems [Hllts are events that cause a
system to reach aerror state from where system executions may deviate
from its specification; i.e., failure may occur.



from the source code and model checks the model with respect t
properties of interest. The abstraction LUTs should be kypt
chronized with any changes made in the source code. Ouriexper
ence shows that after creating the first version of an LUTpiee
it synchronized with the source code has a relatively lowtoead.
The proposed framework includes two components (see Fig-
ure 1): a front-end compiler and a back-end model checkes. Th
front-end, called UPC Model Extractor (UPC-ModEX), extetite
ModEx model extractor of ANSI C programs [12-14] in order
to support the UPC grammar. UPC-ModEx takes a UPC program
along with a set of abstraction rules (specified as a LUT) arid-a
matically generates a Promela model (see FigufePkpmela [10]
is the modeling language of SPIN, which is an extension of th wi
additional keywords and abstract data types for modelingeoe
rent computing systems. We expect that the commonalitiesdad
and Promela will simplify the transformation of UPC progsato
Promela models and will decrease the loss of semantics im suc
transformations. We present a set of built-in abstractidasr for
the most commonly-used UPC synchronization primitivegeAf
generating a finite model in Promela, developers specifpgnaes
of interest (e.g., data race-freedom) in terms of eithepkrasser-
tions or more sophisticated temporal logic [8] expressi@RIN
verifies whether all executions of the model from its initithtes
satisfy the specified properties. If the model fails to mbetgrop-
erties, then UPC-SPIN generates a sequence of programadnstr
tions that could lead to the failure from the initial statégfe 1).
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Figure 1. An overview of the UPC-SPIN framework.

We have used UPC-SPIN to detect and correct concurreney fail
ures in small instances (i.e., programs with a few threafisgdal-
world UPC programs including parallel bubble sort, heat flaw
metal rods, integer permutation and parallel data cobectMore
importantly, for the first time (to the best of our knowledgelk
have generated a finite model of a UPC implementation of the
Conjugate Gradient (CG) kernel of the NAS Parallel Benctusar
(NPB) [24]. We have model checked small instances of the ex-
tracted model of CG for data race-freedom and deadlocldmee
thereby demonstrating its correctness. While the sucdes®del
checking means a model is correct, model checking can ordpbe
plied to small/moderate size models (see Section 6) dueststitie

2An executable copy of UPC-ModEx is available Http://asd.cs.
mtu.edu/projects/pgasver/index_files/upc-modex.html.

space explosion problem. This may appear as a significaitefim
tion considering the common belief amongst developerssibiate
failures manifest themselves only when an applicationasestup

(in terms of the number of processes and domain size of the in-
put variables/parameters). Nonetheless, there is ampleriexen-

tal evidence [16, 21] that most concurrency failures alsetér
small instances of concurrent applications. Thus, a mduetier

that exhaustively verifies all possible interleavings catedt such
failures in small instances of HPC applications.

Organization. Section 2 provides a background on UPC, model
extraction and model checking. Section 3 discusses how the
UPC-ModEXx front-end extends ModEx to support the UPC con-
structs. Subsequently, Section 4 illustrates how we mdusgicthe
Promela models of UPC programs with SPIN. Section 5 presents
the model checking of an UPC implementation of the CG kerhel o
the NPB benchmarks [24]. Section 6 presents the time/spzste ¢

of model checking for our case studies. Finally, Section keaa
concluding remarks and discusses future work.

2. Preliminaries

This section provides the basic concepts of UPC [5, 7] (Suitmse
2.1), finite models of UPC programs (Subsection 2.2), anviear

of model checking using SPIN [11] (Subsection 2.3) and concu
rency failures and properties of interest (Subsection. Zdpsec-
tion 2.5 briefly discusses the internal working of the ANSI Gdé|
Extractor (ModEX).

2.1 UPC: An Overview

UPC extends ANSI C by a SPMD model of computation where the
same piece of code (e.qg., Figure 2) is replicated in distimetads

of execution to process different data streams. The memodein

of UPC (i.e., PGAS) divides its address space into sharegand
vate parts. The shared area of the memory space is parttiote
THREADS sections, where THREADS is a system constant repre-
senting the total number of threads. Each thread has a@rivam-

ory space and is also uniquely associated with a sharedsecti
called itsaffinity; e.g.,A[MYTHREAD] in Lines 10-11 of Figure 2,
whereMYTHREAD denotes thread’s own thread number. To support
parallel programming, UPC augments C with a set of syncheoni
tion primitives, a work-sharing iteration statemept_forall and a
set of collective operations. Figure 2 demonstrates agéntper-
mutation application that takes an array of distinct intsgsee
array A in Line 2 of Figure 2) and randomly generates a permu-
tation of A without creating any duplicate/missing values. Shared
data structures are explicitly declared withteared type modifier.

A shared array of HREADS locks (of typeupc_lock_t) is declared

in Line 3. Each thread initializesS[MYTHREAD] (Lines 10-11) and
randomly chooses an array element (Line 14) to swap withdhe ¢
tents ofA [MYTHREAD] .

2.2 Finite Models of UPC Programs

Let p be a UPC program with a fixed number of threads, denoted
THREADS > 1. A model of p is a non-deterministic finite state
transition system denoted by a tripl®}, d,,, I,) representing the
inter-thread synchronization functionalities pf called thesyn-
chronization skeletowf p. V, represents a finite set of synchro-
nization variables with finite domains. gynchronization variable

is a shared variable (e.g., locks) between multiple threses for
synchronizing access to shared resources/variablesntol vari-
able (e.g., program counter) captures the execution control of a
thread. Astateis a unique valuation of synchronization and control
variables. An ordered pair of statéso, s1) denotes a transition.

A threadcontains a set of transitions, ahg denotes the union of
the set of transitions of threads @fWe use actions (a.kguarded
commandsto represent sets of program transitions. An action is
of the formgrd — stmt, where the guardrd is an expression

in terms of model variables and the statementt updates model



variables. When the guarghd holds (i.e., the action isnableq,
the statemenstmt can be executed, which accordingly updates
some variables. Each action captures a set of transitioasspe-
cific thread.I, represents a set of initial states. The state space of
p, denotedS,, is equal to the set of all statesafA state predicate
is a subset of,; i.e., defines a function fror§i, to {true, falsg. A
state predicateX’ is true (i.e., holds) in a stateiff (if and only if)
s € X. A computation(i.e., synchronization trageof p is amax-
imal sequencer = (so, s1, - - -) Of statess;, whereso € I, and
each transitior{s;, s;+1) belongs to an action of some thread; i.e.,
(si,si41) € 6p fori > 0. That is, eithers is infinite, or if o is
a finite sequencéso, s1, - - - , sr), then no thread is enabled s,
where arenabled threadhas at least one enabled action.
2.3 Model Checking, SPIN and Promela
Explicit-statemodel checkers (e.g., SPIN [11]) create models as
finite-state machines represented as directed graphs inorgem
where each node captures a unique state of the model andreach a
represents a state transition. Symbolic model checkeasecreod-
els as Binary Decision Diagrams (BDDs) (e.g., SMV [18]) angl a
mostly used for hardware verification. If model checkingcaexs,
then the model is correct. Otherwise, model checkers peoste-
narios as to how an error is reached from initial statesedatbun-
terexamplesSPIN is a explicit-state model checker with a C-like
modeling language, called Promela [10]. A Promela model-com
prises (1) a set of variables, (2) a set of (concurrent) EsEe
modeled by a predefined type, callgdctype and (3) a set of asyn-
chronous and synchronous channels for inter-process comaiu
tions. The semantics of Promela is based on an operationdgimo
that defines how the actions of processes are interleavathnAc
can be atomic or non-atomic, where an atomic action (dented
atomic {} blocks in Promela) ensures that the guard evaluation and
the execution of the statement is uninterrupted.
2.4 Concurrency Failures and Properties of Interest
To verify a model using model checkers, developers havedo-sp
ify safety and liveness properties of interest. Intuityyed safety
property stipulates that nothing bad ever happens in any- com
putation. Data race-freedom and deadlock-freedom ararines
of safety properties. Adata raceoccurs when multiple threads
access shared data simultaneously, and at least one of dbese
cesses is a write [19]. A block of statements accessing dltaia
is called acritical sectionof the code, denoted'S; for thread
0 < i <THREADS; e.g., Lines 19-21 and 29-31 in Figure 2 where
threads perform the swapping. A data race could occur when tw
or more threads are in their critical sections. Howeverpufitelock
statements in Lines 17-18 and 27-28 ensure that each thetad g
exclusive access to its critical section so no data racesrotbe
section of the code where a thread tries to enter its criteation
is called itstrying section denotedl'S; for threadi (e.g., Lines 17-
18 and 27-28). A program @eadlockedvhen no thread camake
progressin entering its critical section. Deadlocks occur often due
to circular-wait scenarios when a set of thredds: - - , T, wait for
one another in a circular fashion (e @, waits forT>, T> waits for
T3 and so on untill, which waits forT;). Formally, a deadlock
state has no outgoing transitions. The tWetatements in Lines 16
and 26 of Figure 2 impose a total order on the way lock vargble
are acquired in order to break circular waits.

Inthe UPC program of Figure 2, a safety property stipuldtat t
it is always the caséhat no two threads have access to the same
array cell. In SPIN, such properties are formally specifisidgi the
alwaysoperator in Linear Temporal Logic (LTL) [8], denotéd.
The example UPC code of Figure 2 ensures that the safetynyope
O(((mainz] : s = 7) V (mainj] : s = 7)) = —=(CS; A CSj)))
is met by acquiring locks) < i, 7 < THREADS), whereC'S; is
a state predicate representing that threéaglin its critical section
(i.e., Lines 19-21 or Lines 29-31) and ‘mé&ih s’ denotes the value

of the local variables in threadi created from the proctype ‘main’
in Figure 4.

A progressproperty states that it ialwaysthe case that if a
predicateP becomes true, then another predia@twill eventually
hold. We denote such progress propertiesfby~ Q (read it as
‘P leads toQ’) [8]. For example, in the example UPC program
of Figure 2, we specify progress for each threafd < i <
THREADS) asT'S; ~ CS;; i.e., itis always the case that if thread
1 is in its trying section (represented by the predicBtg), then it
will eventually enter its critical section (i.eC.S; holds).

1 // Declaring shared global variables

2 shared int A[THREADS];

3 upc_lock_t *shared 1k[THREADS];

4

5 int main(int argc, char **xargv) {

6 int i, s, temp;

7

8 // The body of each thread starts

9 // Initialize the array A with distinct integers
10 i = MYTHREAD;

1 A[i] = i;

12 upc_barrier;

13 // Randomly generate a swap index

14 s = (int)1lrand48() % (THREADS);

15

16 if (s<i) {

17 upc_lock(1k[il); // Acquire locks
18 upc_lock(1k[s]);

19 temp = A[il; // Swap

20 A[il = A[s];

21 Als] = temp;

22 upc_unlock(1lk([s]); // Release locks
23 upc_unlock(1k[i]);

24 }

25

26 if (i<s) {

27 upc_lock(1lk([s]); // Acquire locks
28 upc_lock(1k[il);

29 temp = A[il; // Swap

30 A[i] = A[s];

31 A[s] = temp;

32 upc_unlock(1lk[i]); // Release locks
33 upc_unlock(1k[s]);

34 }

s}

Figure 2. Excerpts of the integer permutation program in UPC.

2.5 ModEx: Model Extractor of ANSI C Programs

Since in Section 3 we extend the front-end compiler of the ANS
C Model Extractor (ModEx) [12—14] to support the UPC grammar
this section presents an overview of ModEx, which is a sakwa
tool for extracting finite models from ANSI C programs.

ModEx generates finite models of C programs in three phases,
namely parsing, interpretation using abstraction rulesd opti-
mization for verificationIn the parsing phase ModEx generates
an uninterpreted parse tree of the input source code thafresp
the control flow structure of the source code and the type eniges
of each data object. All basic linguistic constructs of @ (edecla-
rations, assignments, conditions, function calls, cdstatements)
are collected in the parse tree and remain uninterpretesl palse
tree also keeps some information useful for representiegréh
sults of model checking back to the level of source code,(es3.
sociation between the lines of source code and the lines dg co
in the model). The essence of therpretation phase is based
on atabled-abstractiormethod that pairs each parse tree construct
with an interpretation in the target modeling language. Etodan
perform such interpretation based on either a default setbef
straction rules or programmer-defined abstraction rulé$er@nt



types of abstractions can be applied to the nodes of the pase
including local slicing and predicate abstractionin local slicing,
data objects that are irrelevant to the property of intefest., lo-
cal variables that have no impact on inter-thread syncheatiains)
are sliced away. Any operation (e.g., assignments, funatals)
performed on or dependent upon irrelevant data objectsliassls
away and replaced with a null operation in the model. In e
abstraction, if there are variables in the source code wtos®ins
include more information than necessary for model checkimgn
they can be abstracted as Boolean variables in the mode&x-or
ample, consider a variable <temp < 100 that stores the temper-
ature of a boiler tank (in Celsius), and the program shoutd adf

a burner if the temperature is 95 degrees or above. For uagify
whether the burner is off wheemp > 95, a Boolean variable can
capture the value of a predicate representing whether aemetis
below 95. In theoptimization phase, ModEx uses a set of rewrite
rules to simplify some generated statements in Promelacesiiht-
inate statements that have no impact on verification. Fomele,
the guarded commanfalse — = = 0 in Promela can be omit-
ted without any impact on the result of model checking beeaius
guard is alway$alseand the action is never enabled/executed.

3. UPC Model Extractor (UPC-ModEX)

This section discusses how we extend ModEx to support the par
ing (Section 3.1) and the interpretation (Section 3.2) oCUf®n-
structs in UPC-ModEx. Section 3.3 discusses how we abstract
read/write accesses to shared data, and Section 3.4 deatesst
model extraction in the context of the integer permutaticogpam

in Figure 2.

3.1 Parsing UPC Constructs
The ANSI C ModEx lacks support for the UPC extension of C
including type qualifiers, unary expressions, iteraticateshents,
synchronization statements and UPC collectives. Due toespan-
straints, we omit the extension for unary expressions (6g&f
details). The extension for UPC collectives is outside tape of
this paper.
Type qualifiers. UPC includes three type qualifiers, nametyred,
strict andrelaxed. Theshared type qualifier is used to declare data
objects in the shared address space. We augment the grarsingr u
the following rules in the BNF form [2]:

- type_qual: CONST | VOLATILE | shared_type_qual | refer-
ence_type_qual

- shared_type_qual: “shared” | “shared” ‘[’ opt_const_expr ‘|" |
“shared” ‘[*]’

The reference type qualifieesrict andrelaxed are used to de-
clare variables that are accessed based on the strict pedataem-
ory consistency model.

- reference_type_qual: “relaxed” | “strict”

We note that, in this paper, we focus on model checking in the
strict consistency model.
Iteration statements.In addition to regular iteration statements of
C, UPC has a work-sharing iteration statement, denopedorall.
The upc_forall statement enables programmers to distribute inde-
pendent iterations of gor-loop across distinct threads. The gram-
mar ofupc_forall in BNF is as follows:

- forall_stemnt: “upc_forall” '(’ opt_expr ';'opt_expr ’;’
;" affinity_expr ')’ stemnt

- affinity_expr: “continue” | opt_expr

The affinity expressionffinity_expr determines which thread
executes which iteration of the loop depending on the affinit
of the data objects referred iffinity_expr. If affinity_expr is an
integer expressiomxpr, then each thread executes the body of
the loop wherMYTHREAD is equal to ézpr mod THREADS). If
affinity_expr iS continue or not specified, then each thread executes
every iteration of the loop body.

opt_expr

’

Synchronization statementsThe most commonly used synchro-
nization statements in UPC includ&c_barrier, upc_wait and
upc_notify statements. Moreover, UPC has a new type_lock_t
that enables programmers to declare lock variables forrsgniz-
ing access to shared resources/data. The two functiensck()
andupc_unlock() are used to acquire and release shared variables
of typeupc_lock_t. The grammar of the synchronization statements
is as follows:

- upc_barrier_stemnt: “upc_barrier” opt_expr ';’

- upc_wait_stemnt: “upc_wait” opt_expr ';’

- upc_notify_stemnt: “upc_notify” opt_expr ’;’

We extend ModEx to support the compilation of UPC-specific
constructs discussed above.
3.2 Interpreting UPC Constructs Using Abstraction
This section presents a set of abstraction rules that we tieve
veloped for model extraction from UPC programs. We use ModEx
commands [12-14] for the specification of such rules. Eatghisu
of the form:

“

left-hand side right-hand side

The left-hand side is a UPC statement and thight-hand side
could be either a piece of Promela code that should be gederat
corresponding to theeft-hand side or an abstraction command that
specifies how thé&ft-hand side should be treated in the model (see
Table 1 for some example commands). The LUT comprises a set
of abstraction rules. For example, tBkip command generates a
null operation in the Promela model corresponding toéfehand
side, thehidecommand conceals thet-hand side in the model; i.e.,
nothing is generated, and theepcommand preserves thgt-hand
side in the Promela model. Some abstraction commands enable
string matching and replacement, such asShbstitutecommand.

For example, the command

“Substitute MYTHREAD

replaces any occurrence Yy THREAD in the UPC code with
_pid in the model, wherepid captures a unique identifier for each
proctype in Promela. There is also dmport command that in-
cludes the data objeciame from the UPC source code inside the
Promela model with the global scope or the scope of a specific
proctype in Promela.

_pid”

Table 1. Sample Abstraction Commands

Command Meaning
skip Replace with a null operation
hide Conceal in the model
keep Preserve in the model
Substitute P, P, | Substitute any occurrence 8§ with P,
Import name scope Includename with a scope ofscope’

We present the following abstraction rules for model getiena
from UPC programs (see [6] for more rules):

Rule 1: upclock() The upc_lock(upc_lock_t *Ik) function locks a
sharedvariable of typeupc_lock-t. If the lock is already acquired
by some thread, the calling thread waits for the lock to beasgtd.
Otherwise, the calling thread acquires the ldggkatomically. The
corresponding Promela code is as follows:

1 bool 1k; // Global lock variable

2 atomic{ !lk -> lk=true; }

Line 2 represents an atomic guarded command in Promela that
sets the lock variablé to true (i.e., acquiret) if Ik is available.
Otherwise, the atomic guarded command is blocked.

Rule 2: upc_unlock() Theupc_unlock(upc_lock-t *Ik) is translated
to an assignmenk = false in Promela. Assignments are executed
atomically in Promela.



Rule 3: upc_notify We use two global integer variablesrr and
proc to implement the semantics ofc_notify in Promela. Initially,
the value obarr is equal toTHREADS. To demonstrate that it has
reached a notify statement, each thratmmicallydecrements the
value ofbarr and sets the flagroc to zero. Notice thabarr and

3.3 Abstracting Shared Data Accesses

In the model checking of concurrent programs for data race-
freedom, the objective is to check whether or not multiptedas
have simultaneous access to shared data where at leastreaé th
performs a write operation. Thus, the contents of shareidblas

proc are updated atomically because they are shared variables inand the way it is accessed (i.e., via pointers or by name) e

the model and a non-atomic update may cause data races.

1 atomic{ barr = barr -1; proc=0;}

Rule 4: upc.wait Once reached apc_wait statement, a thread
waits until the value obarr becomes zero; i.e., all threads have
reached their notify statement in the current synchroiirgihase.
The value ofproc is set to 1 indicating that some thread has ob-
served thabarr has become zero. Afterwards, each thread incre-
mentsbarr and waits until all threads incremerr or some thread
has witnessed thatrr has become equal tPHREADS in the cur-
rent phase (i.eproc has been set to 0).

1 (barr == 0) || (proc == 1) -> proc = 1;
2 barr = barr + 1;

3 (barr THREADS)

Rule 5: (Split-Phase) upcbarrier The upc_barrier is in fact the
union of a pair ofupc_notify and upc_wait statements. Separate
use ofupc_notify and upc_wait implements the split-phase barrier
synchronization. Split-phase barrier can reduce the hating
overhead of barrier synchronizations by allowing eachatire®
perform some local computations between the time it reaehes
notify statement and the time it reaches a wait statement.

Rule 6: upc_forall To model the work-sharing iteration statement
upc_forall in Promela, we first explain how regular for-loops in C
are modeled by ModEXx. Then, we describe how we extract Peomel
models fromupc_forall statements. Consider a C for-loofar (init;
cond; cntr_update){ stmtBlk;}", whereinit denotes the initialization
of the loop counter, theond represents the termination condition,
cnt_update updates the loop counter astintBIk is the statement
block in the loop body. The following Promela statements etod
such a C for-loop.

|l (proc == 0) -> proc = 0;

1 init;

2 do

3 :: (cond) -> {stmtBlk; update_cntr;}
4 :: else -> break;

5 od;

Line 1 initializes the loop counter and tkde-od loop captures
the control logic of the for-loop. That is, if the conditia@nd
holds, then the loop body is executed and the loop countgp-is u
dated. Otherwise, théo-od loop breaks out. Thapc_forall State-
ment distributes the loop iterations amongst the threadedan
an affinity expressionfér (init; cond; cntr_update; affinity_expr){
stmtBlk;}". If affinity_expr iS equal to tontinue’ Or is unspecified,
then the model generated f@sc_forall is similar to a regular C for-
loop. Otherwiseaffinity_expr could be either an integer expression
intExpr or a reference to the-th element of a shared array. For the
first case, we have the following piece of code instead of Bioé
the abovelo-od loop.

: (cond) -> {if (_pid == intExpr){ stmtBlk; }

update_cntr;}

For the second case, consider a shared array declarehasi“
[block-size] array A[number-of-elements]”. Since UPC distributes
the elements of the arrayin the shared memory space in a round
robin fashion where at leaslock-size elements are associated with
the affinity of each thread, we generate the following Prencelde
when thek-th element of the arrax is referenced inffinity_expr:

: (cond) -> {if (_pid == ((k/block-size))THREADS)){
stmtBlk; } update_cntr;}

vant to verification; rather it is the type of read/write cgtésn on
the shared data that should be captured in a model. For tesme
corresponding to each shared variableve consider two bits in
the Promela model; one represents whether a read operati i
ing performed onc and the other captures the fact thais being
written. Accordingly, if a shared array is used in the UPCgypamn,
its corresponding model will include two bit-arrays. Foample,
corresponding to the arrayin Figure 2, we consider the following
bit arrays in its Promela model:

1 bit read_A[THREADS];
2 bit write_A[THREADS];
The bitread_A[i] (for 0 < ¢ < THREADS—1) is 1 if and only

if a read operation is performed oXi|. Likewise, write_A[7] is

1 if and only if A[¢] is written. Thus, corresponding to any read
(respectively, write) operation oAa[:] in the UPC code, we set
read_A[i] (respectivelywrite_A[¢]) to 1 in the Promela model.
3.4 Example: Promela Model of Integer Permutation

For model extraction, UPC-ModEx needs two input files: theuin
UPC program and a text file that contains the abstraction LUT.
Figure 3 illustrates the LUT for the program in Figure 2:

1 %F Locks.c

2 %X -L main.lut

3 %L

4 Import i main

5 Import s main

6 Substitute MYTHREAD _pid

7 A[i] = 1 hide

8 upc_barrier atomic{ barr = barr -1; proc=0;}

9 (barr == 0) || (proc == 1) -> proc = 1;

10 barr = barr + 1 ;

11 (barr == THREADS) | | (proc == 0)-> proc = 0;
12 s=((int )1lrand48()... select(s: O .. THREADS-1)

13 upc_lock(1k[il) atomic{ '1k[i] -> 1k[i] = true }
14 upc_lock(1lk[s]) atomic{ '1k[s] -> 1lk[s] = true }

15 upc_unlock(1k[i]) 1k[i] = false
16 upc_unlock(1lk[s]) 1k[s] = false
17 t=A[i] read_A[i]=1;
18 read_A[i]=0;
19 A[i]1=A[s] read_A[s]=1;
20 read_A[s]=0;
21 write_A[i]=1;
22 write_A[i]=0;
23 A[s]=t write_A[s]=1;

24 write_A[s]=0;

Figure 3. The abstraction file for the program in Figure 2, where
THREADS = 4.

While the commands used in this file are taken from ModEXx,
the abstraction rules that specify how a model is generated the
UPC program are our contributions. The first line in Figuré & (
command’F) specifies the name of the source file from which we
want to extract a model. Line 2 (i.e., commdriX) expresses that
UPC-ModEXx should extract a model of thain function using the
subsequent abstraction rules. Line 3 (i.e., comnf#ig denotes
the start of the look-up table that is used for model extoactiines
4 and 5 define that the variablésnd s should be included as lo-
cal variables in theroctype that is generated corresponding to the
main function of the source code. Since the contents of a&riyir-
relevant to the verification of data race/deadlock-freedamhide
the statemena[:] = 4 in the model, wheré is set toMYTHREAD.

We apply Rule 5 (presented in Section 3.2) for the abstnaaifo



upc_barrier (Lines 8-11 in Figure 3). Line 14 of Figure 2 (i.e.=
(int)lrand48() % (THREADS)) assigns a randomly-selected integer
(betweerd andTHREADS—1) to variables. The semantics of Line
14 is captured by asélect(v : L..H) statement in Promela (e.g.,
Line 12 in Figure 3), where a random number betwéeand H
(inclusive) is assigned to variabte The value of the variable
determines the array cell with which the value 4fi] should be
swapped by thread Lines 13-16 include the rules for the abstrac-
tion of upc_lock() andupc_unlock() functions. Lines 17-24 illustrate
the rules used to abstract read/write accesses to shaee(hdax-
plained in Section 3.3). For example, the assignm&lat = A[s]
in UPC is translated to four assignments demonstrating Ags
is read and4|[q] is written.

Taking the program in Figure 2 and the abstraction file of Fégu
3, UPC-ModEXx generates the Promela model in Figure 4. Lines 1

6 have been added manually. Line 1 defines a macro that capture

the system constamMHREADS; in this case 4 threads. Lines 2-6
declare global shared variables that are accessed Ipyoatypes

in the model. The prefixactive in Line 8 means that a set of
processes are declared that active (i.e., running) in the initial
state of the model. The suffikf HREADS] specifies the number
of instances of thenain proctype that are created by SPIN. Lines
11-14 implementupc_barrier. Each proctype randomly assigns a
value betwee andTHREADS—1 to variables (Line 17) and then
performs the swapping in either one of thetatements in Lines 18

or 34. The automatically-generated line numbers that aiteanras
comments associate the instructions in the UPC source citle w
the statements in the model.

4. Model Checking with SPIN

In order to verify a model with respect to a property, we firstéd

to specify the property in terms of the data flow or the control
flow of the model (or both). For example, to verify the model of
Figure 4 for lack of simultaneous read and write operatiasesfirst
determine the conditions under which a shared datum is nedd a
written by multiple threads at the same time. (Section Sitates

a case where we verify freedom from simultaneous writesingJs
the abstractions defined for shared data accesses in Sa&jome
define the following macro for the Promela model of Figure 4:

1 #define race_O (read_A[0] && write_A[O])

The macrorace 0 defines conditions under which the array
cell A[0] is read and written at the same time; i.e., there is a
race condition om|[0]. Likewise, we define macros representing
race conditions for other cells of array. To express data race-
freedom in SPIN, we specify the temporal logic expresdion
Irace_0 meaning thait is always the case that the condition rafe
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#define THREADS 4
int barr = THREADS;
int proc = 0;
bool 1k[THREADS];
bit read_A[THREADS];
bit write_A[THREADS];
active [THREADS] proctype main() {
int i, s;
i=_pid; /* line 42 x/
atomic{ barr = barr -1; proc=0; } /* line 39 x/
(barr == 0) || (proc == 1) -> proc = 1;
barr = barr + 1;
(barr == THREADS) || (proc == 0) -> proc = 0;
/* line 44 */
select(s: O .. THREADS-1);
if :: (s<i) > { /* line 54 */
atomic{ !1k[i] -> 1k[i] = 1 }; /* line 59 */
atomic{ !1k[s] -> 1k[s] = 1 }; /* line 60 */
read_A[i]=1; /* line 62 */
read_A[i]=0;
read_A[s]=1; /* line 63 %/
read_A[s]=0;
write_A[i]l=1;
write_A[i]=0;
write_A[s]=1; /* line 64 */
write_A[s]=0;
1k[i] = 0; /* line 66 */
1k[s] = 0; /* line 67 */
}
:: else; /* line 67 */
fi;
if (s>i) > { /* line 67 x/
atomic{ !1k[s] -> 1k[s] = 1 }; /* line 70 */
atomic{ !1k[i] -> 1k[i]l = 1 }; /* line 71 */
read_A[i]=1; /* line 73 %/
read_A[i]=0;
read_A[s]=1; /* line 74 */
read_A[s]=0;
write_A[i]=1;
write_A[i]=0;
write_A[s]=1; /* line 75 *x/
write_A[s]=0;
1k[i] = 0; /* line 77 */
1k[s] = 0; /* line 78 x/
}
:: else; /* line 78 %/
fi;
P: skip; }

Figure 4. The Promela model generated for the program in Figure 2.

is false The data race-freedom in this case is guaranteed by the uses 1 Example: Heat Flow

The Heat Flow (HF) program includéRHREADS>1 threads and

a shared array of size THREADS xregLen, whereregLen > 1

is the length of a region vector accessible to each threaat iEh
each thread (0 < ¢ < THREADS—1) has read/write access to
array cellsti x regLen] up tot[((i + 1) x regLen) — 1]. The
shared array captures the transfer of heat in a metal rod and the
HF program models the heat flow in the rod. Figure 5 presents an
excerpt of the UPC code of HF.

of upc_lock statements in Lines 17-18 and 27-28 in Figure 2, which
are translated as Lines 19-20 and 35-36 in Figure 4. Noreshgl
the use of locks often causes deadlocks in concurrent pregdae

to circular waiting of threads for shared locks. To verifyadbck-
freedom, we must make sure that each thread eventuallyrtates;
i.e., eventually reaches Line 50 of Figure 4. To specify pinigperty,

we define the following macros:

1 #define fin_O0 (main[0]@P)

The macrofin_0 is defined in terms of the control flow of the
first instance of thenain proctype, denoteehain[0], which means
that thread 0 is at the label P (inserted in Line 50). Thusyriéad
0 eventually reaches its last statement (which is a null atper
in Promela denoted bskip), then it is definitely not deadlocked.
Such a property is specified as the temporal logic expression
fin_0, where{ denotes the eventuality operator in temporal logic.
SPIN verifies the integer permutation program with respedeta
race-freedom and deadlock-freedom properties.

Each thread performs some local computations and then all

threads synchronize with thec_barrier in Line 5. The base of the
region of each thread is computed layf THREADx regLen in Line
6. Each thread continuously executes the code in Lines 7.tn26
Lines 8-11, the local value @fnp[0] is initialized. Then, in Lines 12
to 16, each thread where0 < i < THREADS—1, first computes
the heat intensity of the cellgbase] to t[base + regLen — 3]

in its own region. Subsequently, every thread, except tsiedae,
updates the heat intensity tfbase + regLen — 1] (see Lines 17-



1 shared double t[regLen*THREADS];

2 double tmp[2];

3 double e, etmp;

4 // Perform some local computations
5 upc_barrier;
6
7
8
9

base = MYTHREAD*regLen;
for (j =0; j < reglen+l; j++) {
if (MYTHREAD == 0) { tmp[0] = t[0]; }
else {
10 tmp[0] = (t[base-1] + t[base] + t[base+1])/3.0;

11 e = fabs(t[basel-tmp[0]); }
12 for (i=base+l; i<base+regLen-1; ++i) {

13 tmp[1] = (t[i-1] + t[i] + t[i+1]) / 3.0;
14 etmp = fabs(t[i]l-tmp[1]);
15 t[i-1] = +tmp[0];

17 if (MYTHREAD < THREADS-1) {

18 tmp[1] = (t[base+reglen-2] +

19 t[basetreglen-1] +

20 t [baset+reglen]) / 3.0;
21 etmp = fabs(t[baset+reglen-1]-tmp[1]);

22 t[basetreglen-1] = tmp[1];

24 upc_barrier;
25  t[basetreglen-2] =

2 }
Figure 5. Excerpt of the Heat Flow (HF) program in UPC.

tmp [0] ;

23). Before updating[base + regLen — 2] in Line 25, all threads
synchronize usingpc_barrier. Our objective is to verify whether or
not there are any simultaneous read-write operations inSiffee
no thread writes in another thread’s region, no simultaseaites
occur. The significance of this example is that the accessared
data is changed dynamically as each thread updates the afalue
heat flow. Moreover, despite the small number of lines of dade
this example, it is difficult tananuallyidentify where the data races
may occur.

Abstraction Look-Up Table (LUT) for HF. We present the ab-
straction LUT of the HF program below. Lines 1-7 of the table
include the local data and simple mapping rules. The reshef t
abstraction table includes 11 entries located in Lines 814021,
24, 31, 33, 35, 38, 40 and 42. Each entry includes a left-hated s
and a right-hand side defined based on the rules presentestin S
tions 3.2 and 3.3. Hence, we omit the explanation of the abistin
rules of the HF program. Notice that the arraysd_t andwrite_t
have been declared for the abstraction of data accessesgbated
arrayt (as explained in Section 3.3).

1 %F fwup.c

2 %X -L main.lut

3 AL

4 Import i main

5 Import j main

6 Import base main

7 Substitute MYTHREAD _pid
8 tmp[0]=t[0] read_t[0]=1;
9 read_t[0]=0;

atomic barr = barr -1; proc=0;
(barr == 0) || (proc == 1) -> proc
barr = barr + 1 ;

(barr==THREADS) | | (proc==0) -> proc
tmp [0]=(((t [(base-1)]+t [basel)+t[(base+1)]1)/3)
read_t [base-1] 1;

=
o

upc_barrier
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16 read_t[base-1] = 0;
17 read_t [base] = 1;
18 read_t[base] = 0;
19 read_t[base+1] = 1;
20 read_t[base+1] = 0;

e=fabs ((t[base]-tmp[0])) read_t [base]=1;

read_t [base]=0;

NONON
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24 tmp [1]=(((t [(1-1) T+t [11)+

25 t[(i+1)1)/3) read_t[i-1] = 1;

26 read_t[i-1] = 0;

27 read_t[i] = 1;

28 read_t[i] = 0;

29 read_t[i+1] = 1;

30 read_t[i+1] = 0;

31 etmp=fabs ((t[i]-tmp[1])) read_t [basel=1;

32 read_t [base]=0;

33 t[(i-1)]1=tmp[0] write_t[i-1] = 1;

34 write_t[i-1] = 0;

35 etmp=fabs ((t[((base+reglen)-1)]-tmp[1]))

36 read_t[((base+reglen)-1)]=1;

37 read_t [((basetreglen)-1)]=0;

38 t[((basetreglen)-1)]=tmp[1] write_t[((basetreglen)-1)]=1;
39 write_t [((base+reglen)-1)]=0;
40 t[((basetreglen)-2)]=tmp[0] write_t[base+reglen-2]=1;

a1 write_t [base+reglen-2]1=0;

4

[}

tmp [11=(((t[((base+reglen)-2)1+ t[((base+reglen)-1)]1)

43 +t[(basetreglen)])/3) read_t[((basetreglen)-2)] = 1;
44 read_t [((base+reglen)-2)] = 0;
45 read_t[((base+reglen)-1)] = 1;
46 read_t[((base+reglen)-1)] = 0;
a7 read_t[(base+reglen)] = 1;
48 read_t[(basetreglen)] = 0;

The Promela model of HF.UPC-ModEx generates the following
Promela model for the HF program using its abstraction LLAIST
is an instance with 3 threads and region size of 3 for eacladare
The SPIN model checker createBIREADS instances of thenain
proctype as declared in Line 8. We omit the explanation of the
Promela model of HF as it has been generated with the rulesedkefi
in Sections 3.2 and 3.3.

1 #define reglen 3

2 #define THREADS 3

3 int barr = THREADS;

4 int proc = 0;
5 bit read_t[reglen * THREADS];
6 bit write_t[reglLen * THREADS];
7
8
9

active [THREADS] proctype main() {

int base ; /* mapped */

10 int i ; /* mapped */

1 int j ; /* mapped */

12 atomic{ barr = barr -1; proc=0; } /* line 50 */
13 (barr == 0) || (proc == 1) -> proc = 1;

14 barr = barr + 1 ;

15 (barr == THREADS) || (proc == 0) -> proc = 0;

16 base = _pid * reglen; /* 1line 55 */

17 j=0; /* line 60 */

18L_0: do

19 11 (j<(reglen +1)) -> { /* line 60 */

20 if :: (_pid==0) /* line 60 */

21 read_t[0]=1; read_t[0]=0; /* line 64 */
22 11 else; /* line 64 x/

23 read_t[base-1] = 1; read_t[base-1] = 0;

24 read_t[base] = 1; read_t[base] = 0;

25 read_t[base+1] = 1; read_t[base+1] = 0;

26 /* line 68 */

27 read_t[basel=1; read_t[base]=0; /* line 69 */
28 fi;

29 i = base +1; /* line 71 */

30L_1: do

31 :: (i < basetreglen-1) —> {

32 read_t[i-1] = 1; read_t[i-1] = O;

33 read_t[i] = 1; read_t[i] = O;

34 read_t[i+1] = 1; read_t[i+1] = 0;

35 /* line 73 */

36 read_t[base]=1; read_t[base]=0; /* line 74 */
37 write_t[i-1] = 1; write_t[i-1] = 0; /* line 76 */
38 i=1i+41; /* line 76 */

39 }



:: else -> break /* line 76 */

od;

if :: (_pid<(THREADS-1)) /%
read_t[((base+reglen)-2)]
read_t[((base+reglen)-2)]
read_t[((base+reglen)-1)]
read_t[((base+reglen)-1)]
read_t [(base+reglen)] 1;
read_t[(base+reglen)] 0;
read_t[((base+reglen)-1)]=1; /* line
read_t[((base+reglen)-1)]=0;
write_t[((basetreglen)-1)]=1; /* line
write_t [((base+reglen)-1)]1=0;

: else; /* line 87 */

40
41

42

43

44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65}

Model checking for data race-freedom.We specify data race
conditions where at least a write operation is performecukan
neously with multiple reads as the following macrés € ¢ <
THREADS*reglen—1):

1 #define race_i (read_t[i] && write_t[i])

To verify data race-freedom, we use SPIN to check whether the
following property is correctit is always the case that there are
no simultaneous reads and writes on array dgl]. This parame-
terized property is formally expressed(@s racei. We verify the
model of the HF program for data race-freedom on all memadig ce
of arrayt; i.e.,0 < i < THREADSx*reglLen—1. For an instance of
the model wherefHREADS= 3 andreglLen= 3, SPIN finds data
races on the boundary array cells. That is, there are da¢s @t
t[2], t[3], t[5] and¢[6].

Counterexamples.SPIN returns a counterexample, where a read
in Line 23 and a write in Line 51 of the above Promela model oc-
cur simultaneously. Specifically, this counterexample olestrates
that while Thread 0 is writing[2] in Line 51, Thread 1 could be
readingt[2] in Line 23. The translation of this counterexample in
the source code is that a data race occurg[hwhen thread 0O

is writing ¢[2] in Line 22 of Figure 5 and thread 1 is readitig]

in Line 10 of Figure 5. Another data race occurs when threizd
writing its ¢[basé in Line 15 of Figure 5 in the first iteration of the
for-loop Of Line 12, and thread — 1 is readingt[base+regLehnin
Line 20, for1 < ¢ < THREADS—1. This example illustrates how
model checking could simplify the detection of data racdseske
data races can be corrected by using lock variables in apptep
places in the code.

5. Case Study: Model Checking the Conjugate

Gradient Kernel of NPB
This section presents a case study on verifying the data race
freedom and deadlock-freedom of a UPC implementation of the
CG kernel of the NPB benchmark (taken from [24]). The NPB
benchmarks provide a set of core example applicationsdiedir-
nels that are used to evaluate the performance of highly péralle
supercomputers. The kernels of NPB test different typegppfia
cations in terms of their patterns of data access and ihteatl
communication. Since the PGAS model is appropriate forisglv
problems that have irregular data accesses, we select tHe€G

76 */
; /% line

=
S
B
[}

81 */

83 */

87 */

fi;

atomic{barr = barr -1; proc=0;} /* line

(barr == 0) || (proc == 1) -> proc = 1;

barr = barr + 1 ;

(barr == THREADS) || (proc == 0) -> proc
write_t [basetreglen-2]=1;

write_t [base+reglen-2]1=0; /#* line
j =3 +1; /* line 91 %/

89 */

0;

91 */

:: else -> break /* line 91 */

od;

nel of NPB that implements the conjugate gradient methodhby t
inverse power method (which has an irregular data accesspat
Another interesting feature of CG is the use of a two-dinmemeali
array in the affinity of each thread and the way array cellsaare
cessed. To the best of our knowledge, this section presemfest
attempt at mechanical verification of CG. Figure 6 demotedra
the inter-thread synchronization functionalities of CG.

1 struct cg_reduce_s { double v[2] [NUM_PROC_COLS]; };
2 typedef struct cg_reduce_s cg_reduce_t;
3 shared cg_reduce_t sh_reduce[THREADS];
4
int main(int argc, char *xargv) {
// declaration of local variable
// Initialization
upc_barrier;
// Perform one (untimed) iteration to
// initialize code and data page tables
/* The call to the conjugate gradient routine/
conj_grad( . . . );
reduce_sum_2( . . . );
// post-processing
upc_barrier;
/* Main lteration for inverse power method/
for (it = 1; it <= NITER; it++) {
conj_grad( . . . );
reduce_sum_2( . . . );
// post-processing

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
2}

25

upc_barrier;
// Thread 0 prints the results

void reduce_sum_2( double rs_a, double rs_b ) {
int rs_i;
int rs_o;

upc_barrier;

rs_o (nr_row * NUM_PROC_COLS);

for( rs_i=rs_o; rs_i<(rs_o+NUM_PROC_COLS); rs_i++ ){
sh_reduce[rs_i] .v[0] [MYTHREAD-rs_o] rs_a;
sh_reduce[rs_i].v[1] [MYTHREAD-rs_o] rs_b; }

upc_barrier;

36}

Figure 6. Inter-thread synchronization functionalities of the Gaygte
Gradient (CG) kernel of the NPB benchmarks.

The first three lines in Figure 6 define a data structure that is
used to store the results of computations in a collectiveiced
fashion. Thecg_reduce_s structure captures a two dimensional vec-
tor, and the shared array_reduce defines a two dimensional vec-
tor in the affinity of each thread. After performing some loicé
tializations, all threads synchronize usitygr_barrier in Line 8 of
Figure 6. Then an untimed iteration of the inverse power oubth
is executed (Lines 9-10) before all threads synchronizénaga
The reduce_sum_2 routine distributes the results in the shared ad-
dress space. THer-loop in Line 17 implements the inverse power
method. Afterwards, all threads synchronize in Line 22, trah
Thread 0 prints out the results. The main difficulty is in thewe
abstract the pattern of data accessesdnce_sum_2.

Abstraction. To capture the way write operations are performed,
we consider the following abstract data structures in thareta
model corresponding ten_reduce:

1 typedef bitValStruc { bit b[NUM_PROC_COLS] };

2 typedef bitStruc { bitValStruc v[2] };

3 bitStruc write_sh_reduce[THREADS];

Lines 1-2 above define a two dimensional bit array (of type
bitStruc) in Promela and Line 3 declares a bit arraypabtruc with
size THREADS. Next, we abstract thér-loop Of reduce_sum_2 in
Promela as follows:



(_pid / NUM_PROC_COLS) * NUM_PROC_COLS; model checking of progress properties is more complex; veatsp

1 rso =

2 rsi = rso; 0.125 and 12.4 seconds for instances with 3 and 4 threads.&PI

3 do . plored 2.7 million states in the model checking of integenpga-

4 i: (rsi < rso + NUM_PROC_COLS) -> { L tion for 4 threads. FOTHREADS= 5, model checking of both data

° write_sh_reduce[rsi].v[0].b[_pid-rso] = i; race-freedom and deadlock-freedom took much longer antteve

6 write_sh_reduce[rsi].v[0].b[_pid-rso] = 0; . - .

. . . _ ally failed due to insufficient memory.

7 write_sh_reduce[rsi].v[1].b[_pid-rso] = 1; . .

8 write_sh_reducelrsi].v[1].b[_pid-rso] = 0; Model checking of heat flow. Table 3 summarizes our results

0 rsi = rsi +1; } for the model checking of HF. For 3 threads and region size 3,
10 :: !'(rsi < rso + NUM_PROC_COLS) -> break; the model checking took 0.8 seconds for cases where the model
11 od; satisfied data race-freedom, called shiecess caseand 0.171 Sec.

Observe that any write operation has been modeled by settingfor cases where the model violates the data race-freeddie tae

and resetting the corresponding bit in the ansaiye_sh_reduce. failure casege.g., accessing the array cells that are on the boundary

Model checking CG for data race-freedom.Since the results of ~ of two neighboring regions). Once a failure is found, SPIbpst
local computations are written in shared memory, we onlyfwer ~ and provides a counterexample, thereby avoiding the exjabor
freedom from simultaneous writes. Specifically, we verifgttbe- of the unexplored reachable states. For this reason, tifecagon
fore setting a bit in the arrayrite_sh_reduce, that bit is not already ~ of failure cases takes less time. For 4 threads and regien3siz
set by another thread. We insert assertstatement (Lines 3 and model checking took 20.5 seconds for success cases andforl71
7 below) that verifies data race-freedom. While model chegki failure cases. For 5 threads, SPIN failed to give any resluiésto
SPIN verifies that the assertions hold. In the case of CG f@& 2, memory constraints.

and 4 threads, we found no simultaneous writes. To investigate the impact of the region size on the time cempl
1 do ity of model checking, we increased the region size for trse
2 :: (rsi < rso + NUM_PROC_COLS) -> { THREADS= 3 (see Table 3). The time increase in failure cases is
3 assert(write_sh_reduce[rsi].v[0].b[_pid-rso] != 1) ; negligible. Observe that, increasing the number of threaides the
4 write_sh_reducelrsi].v[0].b[_pid-rso] = 1; model checking time exponentially, whereas the regioncizses
5 write_sh_reduce[rsi].v[0].b[_pid-rso] = 0; an almost linear increase. This is because increasing théenof
‘75 assert(write. sh_reduce[rsi].v[L].b[_pid-rso] 1= 1) threads exponentially increases the number of reachadiiessiue
. write_sh_reduce(rsi].v[1].b[.pid-rso] z 1; to the combinatorial nature of all possible thread intesilegs.

0 write_sh_reduce[rsil.v[1].b[_pid-rso] = 0; | # Threads | Region Size| Time (Sec.)| # States |

10 rsi = rsi +1; } 3 3 0.8 166,740

1 :: ! (rsi < rso + NUM_PROC_COLS) -> break; 3 y 514 220 857

12 od; ?

Model checking CG for deadlock-freedom.To make sure that g 2 5519 192;),8232234

each thread eventually terminates, we insert a label “fiar’ & 3 v 9'53 3'209’852

null operationskip as the last operation in the body of each thread . bl

(similar to the label P in Line 50 of Figure 4). Then we define th 3 8 16.9 >,231,708

following macro: 3 9 25.1 8,081,872
1 #define fin_ 0 (main[0]@fin) 3 10 37.5 11,959,928

We use similar macros to specify a progress property fis_: 4 3 205 6,680,083

for each thread stating that each thread will eventually terminate; 4pje 3 Time/Space costs of the model checking of Heat Flow for
i.e., will not deadlock. SPIN verified that each thread teaes for data raée-freedom.

instances of the CG kernel with 2, 3 and 4 threads. ) )
In terms of space complexity, SPIN explored almost 11.96 mil

6. Experimental Results lion states for the model checking of an instance of the heat fl
model with 3 threads and the region size of 10. Nonetheless/f
instance with 4 threads and region size 3, SPIN explored @7 m
lion states. The verification of an instance with 5 threads tte
region size 3 failed due to insufficient memory.
Model checking of CG.For 2 threads, the time spent for the model
checking of assertion violation is negligible. For deatiieedom
of each thread, SPIN needed 0.015 seconds. The model chexkin
assertion violations for 3 and 4 threads respectively regud.031
and 3.17 seconds and SPIN spent 0.4 and 17.5 for the veoficati
of deadlock-freedom for 3 and 4 threads respectively (sédeTa
4). The model checking of the CG model with 5 threads was

In order to give a measure of the time/space cost of modekehec
ing, this section presents our experimental results forntioglel
checking of the integer permutation program in Figure 2 Heat
Flow program in Figure 5 and the CG program in Figure 6. The
platform of model checking is a HP Tablet PC with an Intel Dual
Core Processor T5600 (1.83 GHz) and 1GB memory available for
model checking.

Model checking of integer permutation.We have model checked
the integer permutation program of Figure 2 for data raeediom
and deadlock-freedom, whese< THREADS < 5 (see Table 2).

| Property | # Threads | Time (Sec.)| # States | inconclusive due to memory constraints. To verify an inséanith
Data Race-Freedom 3 0.047 33,1890 4 threads, SPIN explored almost 3 million states.
Data Race-Freedom 4 5.11 2,656,001 | Property | # Threads | Time (Sec.)| # States |
Deadlock-Freedom 3 0.125 67,296 Data Race-Freedorh 3 0.031 19,894
Deadlock-Freedom 4 12.4 2,681,440 Data Race-Freedom 4 317 1,299,858
- - Deadlock-Freedom 3 0.4 45,282
'Ir;]aubtlaetig.nTlme/Space costs of the model checking of Integer Per- Deadlock-Ereedom 7 175 2988522

Verifying data race-freedom took 0.047 and 5.11 seconds re- Table_ 4. Time/Space costs of the model checking of Conjugate
spectively for models with 3 and 4 threads. The model checkin Gradient.
of thread termination needs more time since the algorithnihfe



7. Conclusions and Future Work
We presented a framework, called UPC-SPIN (see Figure 1), fo

the model checking of UPC programs. The proposed framework

requires programmers to create a tabled abstraction fitespiea-
ifies how different UPC constructs should be modeled in Plame
[10], which is the modeling language of the SPIN model checke
[11]. We presented a set of built-in rules that enable thérabs
tion of UPC synchronization primitives in Promela. The UBEIN
framework includes a front-end compiler, called the UPC Klod
Extractor (UPC-ModEX), that generates finite models of URE p

grams, and a back-end that uses SPIN to verify models of UPC

programs for properties of interest. Using UPC-SPIN, weshaer-
ified several real-world UPC programs including paralleblie
sort, heat flow in metal rods, integer permutation and pelreita
collection (see [6] for details). Our verification attempts/e both
mechanically verified the correctness of programs and hbse a
revealed several concurrency failures (i.e., data racdsdaad-
locks/livelocks). For instance, we have detected datasriaca pro-
gram that models heat flow in metal rods (see Section 4.1)eMor
importantly, we have generated a finite model of a UPC impfeme
tation of the Conjugate Gradient (CG) kernel of the NAS Reral
Benchmarks (NPB) [24], and have mechanically demonstrigged
correctness for data race-freedom and deadlock-freedarhale
illustrated that even though we verify models of UPC proggam
with a few threads, it is difficult tonanuallydetect the concurrency
failures that are detected by the UPC-SPIN framework. Maggo
since SPIN exhaustively checks all reachable states of a&inod
such failures certainly exists in model instances withdangum-
bers of threads.

There are several extension to this work. First, we would lik
to devise abstractions rules for all UPC collectives andément
them in UPC-ModEX, which is the model extractor of UPC-SPIN.
Second, to scale up the time/space efficiency of model chgckie
are currently working on integrating a swarm platform fordab
checking [15] in the UPC-SPIN framework so that we can exploi
the processing power of computer clusters for the modelkthec
of UPC applications. Third, we plan to investigate the matheick-
ing of UPC programs in the relaxed memory consistency model.
Last but not least, we believe that a similar approach camkent
to facilitate the model checking of other PGAS languages.
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