UPC Queues for Scalable Graph Traversals:
Design and Evaluation on InfiniBand Clusters

Jithin Jose Sreeram Potluri Miao Luo

Sayantan Sur

Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering, The Ohio State University
{jose, potluri, luom, surs, panda}@cse.ohio-state.edu

1. Abstract

PGAS languages like UPC are growing in popularity because of
their ability to provide shared memory programming model over
distributed memory machines. While this abstraction provides bet-
ter programmability, some of the applications require mutual exclu-
sion when operating on shared data. Locks are a common way to
achieve mutual exclusion in shared memory algorithms. However,
they impose a huge performance penalty on distributed memory
machines and have been shown to be one of the major scaling bot-
tlenecks. Simplistic approaches to eliminate locks by replicating
resources is inherently non-scalable due to high memory cost.

In this paper, we introduce a UPC library that provides the ab-
straction of Queues. Our UPC library is tightly integrated with un-
derlying UPC Runtime and utilizes Active Messages. The imple-
mentation of Active Messages provides implicit mutual exclusion
that we exploit to design Queues. We present the design and im-
plementation of Queues in UPC and compare their performance
with that of existing mechanisms for operating on shared data
with mutual exclusion. We evaluate our approach by re-designing
two popular graph benchmarks: Graph500 and Unbalanced Tree
Search (UTS), using Queues in UPC. Experimental results indi-
cate that queue-based implementation for Graph500 outperforms
the replication-based implementation by around 44% and 30% for
512 and 1,024 UPC-threads, respectively. Performance improve-
ments of queue-based version of Unbalanced Tree Search (UTS)
benchmark over the current version are about 14% and 10% for
similar scale runs, respectively. Our work is based on the Berkeley
UPC Runtime and the Unified Communication Runtime (UCR) for
UPC and MPI, developed at The Ohio State University.

2. Introduction

Partitioned Global Address Space (PGAS) languages improve ease
of programming by providing a shared memory abstraction on dis-
tributed memory machines [10]. They also provide control of data
layout and work distribution which allows applications develop-
ers to take advantage of locality. Unified Parallel C (UPC) [30], a
dialect of C (ISO C99), is one of the most popular languages in
the PGAS family. Several flavors of UPC are available along with
implementations for the compiler and runtime on a variety of ar-
chitectures including commodity clusters and leadership class ma-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Fifth Conference on Partitioned Global Address Space Programming Model
October-2011, Houston, TX.

Copyright © 2011 ACM [to be supplied]. .. $10.00

chines such as the Blue Gene/P [4, 20, 28]. The Berkeley UPC
implementation [20] is a widely-used open-source implementation
that has support on several high-performance interconnects such
as Myrinet, InfiniBand and Quadrics through the portable GASNet
runtime [13].

Graphs are one of the most ubiquitous models in analytical
workloads. They are powerful representations of many types of re-
lations and process dynamics and are used in a variety of scientific
and engineering fields like cyber security, medical informatics, so-
cial networks, symbolic networks, financial applications, etc. Basic
graph algorithms such as breadth-first search, depth-first search,
shortest path, minimum spanning tree, etc. are key components
in many modern real-life applications [11], [25], [32], [15]. For
these reasons, optimizing graph algorithms is of high importance.
Benchmarks that help analyze behavior of clusters in the context of
graph algorithms are also gaining popularity. The Graph 500 [2],
announced at International Supercomputing Conference (ISC’10),
provides a set of graph benchmarks for evaluating and ranking su-
percomputers across the world. Another popular graph benchmark
is the Unbalanced Tree Search (UTS) [26]. These benchmarks rep-
resent applications with data intensive and irregular communication
patterns. The benchmark results provide useful insight into perfor-
mance of various systems for similar workloads.

2.1 Motivation

Distributed graph algorithms require communication between
peers. In UPC, this is expressed by threads modifying globally
shared data structures It is common for multiple threads to simul-
taneously exchange data with a single thread. Mutual exclusion is
required in such scenarios, to ensure correctness. Schemes based on
locks are commonly used to achieve this. Locks on shared-memory
systems are infamous for contention and come with a considerable
overhead on distributed-memory architectures, therefore, they are
not scalable. Another approach to this is to replicate resources and
each of the remote threads operate on one of these resources. This
scheme achieves mutual exclusion between sending threads but,
leads to increased memory consumption and impacts performance
due to the overhead of polling replicated resources. The impact of
polling becomes significant as the system scale increases. To quan-
titatively characterize the scalability issues of operating on shared
UPC data structures using existing mechanisms, we performed the
following experiment. In our experiment, every thread sends a fixed
amount of data to thread(, and threadO sends back the data to the
sender thread. A naive way to implement this in UPC is to use
locks, by having a receive buffer at thread0 and preventing simul-
taneous access through a lock. As we can see from Table 1, this
scheme does not scale. Another method to implement this bench-
mark is to use notification array with resource replication. In this
scheme, separate receive buffers are kept for each remote thread.
Each of the remote threads puts data into the corresponding buffer.



No. of Threads 4 16 64 256
UPC Locks 24 | 135 | 610 | 2610
Notification Array (Replication) 6 31 138 610

Table 1. Average send-recv time using Locks and Resource Repli-
cation schemes for 128 bytes data (time in usec)

Then it sets a specific value in the notification array to indicate that
it has put data. Thread( polls notification array to identify which
all threads have put data. Even though the latency decreases a little,
it requires more memory (O(N) per process).

Queues provide a good abstraction for managing producer-
consumer relationships. It can be implemented efficiently in a
contention-free manner using active messages, while having a
small memory footprint and minimal polling overhead. This moti-
vates the work in this paper to introduce the concept of queues with
implicit mutual exclusion in UPC and demonstrate how they can be
used to address mutual exclusion overheads in graph benchmarks.

2.2 Contributions

This paper makes several important contributions. They are listed
as follows:

1. We introduce Queues with implicit mutual exclusion in UPC
and present their design and implementation in UPC runtime.

2. We demonstrate how data intensive irregular applications in
UPC can be redesigned using Queues for better performance.
We use Graph500 and Unbalanced Tree Search (UTS) bench-
marks as examples.

3. We provide detailed performance evaluation using a set of
micro-benchmarks and the aforementioned application bench-
marks.

Graph500 benchmark using Queues outperforms the naive im-
plementation, based on standard UPC primitives, by around 44%
and 30% for 512 and 1,024 UPC-thread runs, respectively. Perfor-
mance improvements for queue variation of UTS over the existing
version are about 14% and 10% for similar scale runs, respectively.
Our work is based on the Berkeley UPC Runtime and the Unified
Communication Runtime (UCR), developed at The Ohio State Uni-
versity. It throws light to the possibility of tremendous performance
improvement and ease of programmability using the Queue concept
in PGAS languages.

The rest of the paper is organized as follows. Section 3 describes
the existing mechanisms for implementing queues and related work
in the field of optimizing graph algorithms for PGAS models, and
contrast our work. In Section 4, we describe background mate-
rial for this work. In Section 5, we state the design requirements
for queues in UPC, present queue operations and provide details
of design and implementation of queues in UPC runtime. In Sec-
tion 6, we demonstrate that data intensive irregular applications can
be redesigned with queues using two popular graph benchmarks:
Graph500 and UTS. Then, in Section 7, we provide a detailed eval-
uation of our implementation of queues using micro-benchmarks
and the aforementioned graph benchmarks. We conclude in Sec-
tion 8 and discuss future directions

3. Related Work

In this Section, we describe associated background work that is rel-
evant to this paper. We also discuss about other recent and related
work in this area.

PGAS Graph Optimizations: Irregular graph algorithms with
data intensive workloads and random access pattern are known

to be notoriously hard to implement and optimize for high per-
formance on distributed-memory systems. Even though shared-
memory algorithms can easily be mapped onto distributed-memory
systems using PGAS languages, these might not result in high per-
formance due to irregular communication pattern and lack of lo-
cality. G. Cong et. al. investigated this in detail and proposed a
set of optimization techniques for improving access locality [11],
which helped in improving communication performance as well.
They also proposed optimization techniques such as compaction,
offloading, circular orchestration, etc. J. Zhang et. al analyze the
UPC implementation of Barnes Hut algorithm [5] in [32] and ap-
ply successive optimization techniques to tremendously improve
performance. Most of the optimizations they considered were in
one way or another related to improving the locality. In our work,
we propose Queues in UPC and show how the graph algorithms can
be implemented efficiently using this. The optimization techniques
proposed in [11] and [32], and our work are orthogonal. The opti-
mization techniques proposed in these works can be applied along
with the use of UPC Queues.

Message Passing Runtimes and Active Message Libraries: Su-
percomputer systems designed specifically for data intensive and ir-
regular applications are available [1]. These systems are massively
multithreaded and target parallel applications that are dynamically
changing and require random access to shared memory. High per-
formance message passing runtimes [19] for specific systems plat-
forms have been proposed. Such runtimes are tightly dependent on
the underlying machine architecture and special interface classes
need to be implemented for other target architectures. Jeremiah et.
al proposed Active message library [31]. Such user libraries im-
plemented over MPI introduce overheads from MPI stack, such as
tag matching, sender matching, etc. On top of this, extra data bytes
need to be transferred for MPI headers. Usability is another impor-
tant aspect. In case of user level active messaging libraries, specific
message handlers need to be implemented. UPC Queues provide a
simple and easy to use interface. Since the UPC Queues are imple-
mented over GASNet, no additional overheads are imposed. Design
and implementation details of UPC queues are mentioned in detail
in Section 5.

4. Background

In this section, we provide a brief overview about the UPC GASNet
system architecture, InfiniBand communication system and Unified
Communication Runtime (UCR). We also provide a brief overview
about the two graph benchmarks, Graph500 and UTS.

4.1 UPC and GASNet Communication System

Unified Parallel C (UPC) [30] is an emerging parallel program-
ming language that aims to increase programmer productivity and
application performance by introducing parallel programming and
remote memory access constructs in the language. UPC is based
on the Partitioned Global Address Space (PGAS) programming
model. The PGAS programming model allows programmers to
view a distributed memory supercomputer as a global address
space, that may be partitioned to improve performance. There
are several other PGAS programming languages, namely X10 [9],
Chapel [8] and HPF [21], along with Global Address Space li-
braries such as Global Arrays [14].

The runtime implementations of UPC have been demonstrated
to be scalable and provide very good performance to end appli-
cations through fine-grained remote memory accesses [7] and im-
proved communication overlap [24]. In particular, the Blue Gene
implementation of UPC, developed by IBM, has been demonstrated
to be highly scalable [6]. In this paper, we focus on the Infini-
Band implementation of UPC through the popular GASNet com-



munication library [13]. GASNet is a language-independent, low-
level networking layer that provides network-independent, high-
performance communication primitives tailored for implementing
parallel global address space SPMD languages such as UPC, Tita-
nium, and Co-Array Fortran.

UPC Runtime makes use of GASNet interface for remote mem-
ory updates and accesses. This interface consists of Core APIs
and Extended APIs [13]. The core API interface is a narrow in-
terface based on the Active Message paradigm. Extended APIs
provide a rich, expressive and flexible interface that provides
medium and high-level operations on remote memory and col-
lective operations. GASNet supports different network conduits,
viz., ibv (OpenIB/OpenFabrics IB Verbs), udp (UDP), lapi (IBM
LAPI) [16], mpi (MPI), etc. In [18], we proposed a new high per-
formance conduit for InfiniBand networks. This work is described
in detail in Section 4.3.

4.2 InfiniBand

InfiniBand [17] is an open industry standard switched fabric that is
designed for interconnecting nodes in High End Computing clus-
ters. It is a high-speed, general purpose I/O interconnect that is
widely used by scientific computing centers world-wide. The re-
cently released TOP500 rankings in June 2011 indicate that more
than 41% of the computing systems use InfiniBand as their primary
interconnect. One of the main features of InfiniBand is Remote Di-
rect Memory Access (RDMA). This feature allows software to re-
motely read memory contents of another remote process without
any software involvement at the remote side. This feature is very
powerful and can be used to implement high-performance commu-
nication protocols. InfiniBand has started making in-roads into the
commercial domain with the recent convergence around RDMA
over Converged Enhanced Ethernet (RoCE) [29].

4.3 Unified Communication Runtime (UCR)

UCR provides a unified and high performance communication run-
time that supports multiple programming models. This facilitates
hybrid programming models without having the overheads of sep-
arate runtimes and their inter-operation. UCR was first proposed
in [18], (previously called INCR) and introduced a new high per-
formance InfiniBand conduit for GASNet, (GASNet-UCR), which
supports MPI and UPC communications simultaneously. The
project draws from the design of MVAPICH and MVAPICH?2 [23]
software stacks. UCR has been optimized with multiple endpoints
design in order to enhance the performance of multi-threaded UPC
runtime [22]. High performance computing runtime and distributed
communication models share significant overlap. UCR provides a
clean and simple interface for supporting different programming
models and even data center applications such as Memcached.

4.4 Graph500

Graph500 Benchmark Specification [3] is proposed to direct de-
sign of a new set of benchmarks that can evaluate the scalability
of supercomputing clusters in the context of data-intensive applica-
tions. Graph500 benchmark stresses hardware and runtime systems
by forcing massive amounts of communication and synchroniza-
tion thereby modeling more realistic application workloads. The
Graph 500 was announced at International Super Computing, 2010
(ISC’10) and the first Graph500 ranking appeared at Super Com-
puting, 2010 (SC’10). The ranking of systems based on Graph500
is released twice every year, in June and November. It consists of
three comprehensive benchmarks to address application kernels:
Search (Concurrent Search), Optimization (Single Source Shortest
Path) and Edge Oriented (Maximal Independent Set). These repre-
sent business area data sets, such as cyber security, medical infor-
matics, data enrichment, social networks, symbolic networks, etc.

We focus on concurrent search benchmark in this paper, which ba-
sically does BFS traversal of the graph.

Concurrent search benchmark consists of three phases (termed
as kernels in benchmark specification). The first is ‘Graph Con-
struction’, which generates edge. The ‘Kronecker Generator’ al-
gorithm is used in the reference implementation. From the edge
list, graph is constructed in Compressed Sparse Row (CSR) format.
Each UPC thread keeps the adjacency list information of vertices
that it owns. Vertex ownership is defined in cyclic manner (vertex
number modulo number of processes). The second kernel is the
actual ‘Breadth-First-Search’. In kernel2, 64 search keys are ran-
domly sampled from the vertices in the graph. For each of these
search keys, BFS traversals are made, one by one. The final ker-
nel is the validation kernel, which ensures the correctness of BFS
traversal.

Several versions of referenced benchmark (Concurrent Search)
implementation are available on Graph500 List [2], including se-
quential, OpenMP, XMT, and MPL.

4.5 Unbalanced Tree Search (UTS)

The Unbalanced Tree Search (UTS) benchmark is designed to eval-
uate the performance and programmability of parallel applications
that require dynamic load balancing [27]. It targets the problem of
performing an exhaustive search on an implicitly defined tree: any
node in the tree has enough information to construct its sub-tree
from the description of its parent, using SHA-1 cryptographic hash
function [12]. The tree is constructed on the fly during the search
process. Load balancing issue arises because of the variation in the
sizes of sub-trees generated at different nodes. Parallel implemen-
tation of the search requires continuous dynamic load balancing
to keep all processors engaged in the search [25]. While this can
be solved using work sharing or work stealing, the later has been
shown to be more efficient. Processes/threads that become idle can
steal nodes from others with minimum disturbance to the search
process. UTS has been implemented using several popular paral-
lel programming models: UPC, OpenMP, MPI, Shmem, Pthreads,
Chapel and X10, etc. Earlier work has optimized the implemen-
tation in UPC to achieve up to 80% efficiency on 1,024 proces-
sors [25, 26]. It has been shown that UPC provides ease of ex-
pressing asynchronous work-stealing protocols compared to mes-
sage passing models. We have used ‘uts_upc_enhanced’ (in UTS
v1.1) as the base version for our work. This is one of the most op-
timized and enhanced implementations of UTS benchmark.

5. Design

In this section, we first discuss the design requirements for queues
in UPC and explain how these can be satisfied in UPC Queues.
Then we present the different queue operations followed by their
design and implementation using active messages.

5.1 Design Requirements

We expect that a design for queues in UPC should satisfy the fol-
lowing requirements

1) Programmability: Ease of programming is an important reason
for the growing popularity of PGAS languages in general and UPC
in particular. Ensuring this is imperative for the acceptance of any
new extensions to the UPC standard. Hence we consider this the
first requirement while proposing queues in UPC. Queues can im-
prove programmability compared to the alternatives like locks and
resource replication. For example, work delegation to a peer thread
which involves the sequence of lock() - memput() - unlock() calls
in a lock-based design can be replaced by a single enqueue call
in a queue-based application. Queues can avoid the complexity of



managing and polling multiple data structures for incoming work
messages as is the case of a replication-based design.

2) Scalability: The fact that existing mechanisms for achieving
mutual exclusion in UPC do not scale well is the key motivation
factor behind our work. The design of queues should be centered
around this requirement. It should avoid the contention seen with
locks on one hand, while minimizing memory and polling over-
heads on the other. Active messages in GASNet provide a good
option for implementing queues. As will be presented in the later
sections, queues implemented over active messages can achieve
very good scalability with a small memory footprint and minimum
polling overhead.

3) Low Latency: It is necessary that queue operations have min-
imal overhead as compared to the lower level interface on which
they are implemented. Work delegation requests, or control mes-
sages can be considered as one of the major use cases for UPC
queues. It is imperative that these requests are delivered with low
latency. As will be discussed in Section 5.3, queue operations map
closely onto active messages, have minimum overheads and can
achieve latencies close to that of active messages.

4) Portability: As UPC is used on a myriad of system architectures,
it is important for its features to be portable without sacrificing per-
formance. The design of queues should not be based on any single
network (or conduit) or specific architecture, and should ensure
portable performance. We implement queues over active messages
provided by GASNet. GASNet can be configured to use any of
the conduits, like IBV (for InfiniBand), UDP, SMP, MPI (GASNet
implementation over MPI semantics), etc. Thus, queues inherently
gain this portability. Our evaluation in Section 7 shows that queues
can achieve similar benefits in performance over different conduits.

UPC Runtime System

________ 1
1
Proposed !
PCR API ! |
upc s | UPC Queues !
-:
Core APIs Extended APIs
(Active Messages) (H/w Support)

GASNet Communication System

Network Hardware

Figure 1. Implementation of Queues in UPC Runtime

5.2 UPC Queue Operations

In this section, we present an overview of the operations that can
be performed on the proposed Queues in UPC. The work in this
paper focuses more on the performance and productivity aspects of
queues in UPC, rather than on the syntax of queue APIs. Queue ac-
cess APIs can be made in sync with UPC language constructs using
efficient compiler translation techniques. We emphasize more on
the concept of queues in UPC and demonstrate how applications

can be implemented efficiently using it. The current implementa-
tion of queues is done in the UPC runtime layer and it supports five
basic operations. Each of these are explained in detail below.

1) upc_queue_create: This operation creates an instance of UPC
Queue and returns a handle. All subsequent queue operation calls
use this handle to identify the queue instance. This is designed as a
collective call. UPC queue supports coalescing of queue elements,
which avoids the communication cost for each of the enqueue oper-
ation. This feature is optional and can be enabled or disabled using
specific flags in upc_queue_create.

2) upc_queue_enqueue: Queue items can be enqueued using this
function. If coalescing is enabled, queue item is buffered locally,
until the local bucket for the target is full or until an explicit flush
call is made. Otherwise, it is sent immediately. Queue item can be
any data, and the size of the data is indicated as an input parameter
to this operation.

3) upc_queue_dequeue: This function call is used to dequeue
items from the queue. It can operate in two modes, blocking and
non-blocking. In case of blocking mode and if the queue is empty,
the function call blocks until an item is put into the queue or until
a specified timeout. If queue is not empty, the call returns immedi-
ately, and the queue item gets dequeued. In case of non-blocking
mode, function call returns immediately whether or not queue is
empty. In-out argument indicate the size of queue item, which gets
dequeued. If the queue is empty, this argument is set as zero when
the function call returns.

4) upc_queue_flush: This function is needed only in coalescing
mode. As indicated above, in coalescing mode, queue items are
buffered until the bucket is full. upc_queue_flush can be used
to flush out any such buffered queue items. This is designed as a
non-collective call, for better programmability.

5) upc_queue_destroy: Queue can be destroyed using this func-
tion call. Any resources allocated for supporting queue operations
are released in this call. This is designed as a collective call.

5.3 Design and Implementation

The proposed ‘UPC Queues’ are implemented in UPC Runtime
layer. UPC Runtime layer employs GASNet interface for remote
memory updates and shared memory accesses. GASNet provides
active messaging interface as well as direct remote memory access
interface. Implementing queues over direct remote memory ac-
cesses will again require explicit locking mechanisms which have
inherent performance and scalability constraints. We considered
GASNet active messages for implementing UPC Queues, because
active message semantics match very well with the UPC Queue im-
plementation requirements. They provide implicit mutual exclusion
when executing at a given thread.

Active messages are similar to normal messages, but it invokes
a handler function at the receiver side. The handler function is
selected based on the handler id, which the active message carries
along with. It also carries arguments with which the handler shall be
executed. GASNet Active Message interface consists of three APIs,
namely, gasnet_AMRequestShort, gasnet_AMRequestMedium and
gasnet_AMRequestLong [13]. This classification is based on mes-
sage size. gasnet_AMRequestShort active message carries only
handler id and arguments without any data payload, whereas
gasnet_AMRequestMedium carries payload along with the handler
id and arguments. gasnet_AMRequestLong is designed for large
payloads. It puts the payload directly in the target location at the



receiver side and then, the message handler is executed. The target
location needs to be known while sending the message.

We chose medium active messages to implement queue opera-
tions. Small active messages do not carry payloads; and in case of
long active messages, the target location needs to be known while
sending the message. These do not satisfy the requirements of en-
queue and dequeue operations that have a payload and operate on
a queue handle rather than specific addresses. Medium active mes-
sages address these requirements well.

The enqueue operation works as follows: Enqueue operations
invoked from UPC application layer is translated into GASNet
medium messages at runtime layer. Queue item is set as the pay-
load, and the handler identifier for queue operation is set as the
handler id. When an active message arrives at the receiver side, it
is buffered in the UPC runtime layer. Reception of active message
and the buffering is transparent to the UPC application layer. The
queue item is given to the application layer only when it invokes
dequeue operation.

UPC Queues provide coalescing of queue items. Coalescing
avoids the communication costs for each enqueue operation. Mul-
tiple queue items destined for a remote thread are aggregated and
are sent out as a single active message. In order to support coalesc-
ing, separate buckets are kept for each of the remote UPC threads.
As only one bucket buffer is required for each remote thread, the
memory requirement is not substantial. These buckets are created
during the queue creation time, based on the coalescing size spec-
ified. During an enqueue operation, the queue item is put into the
bucket designated for the destination thread. The data is sent out,
when the bucket is full, or when a flush operation is called by the
UPC application. If enqueue operation is invoked without coalesc-
ing (immediate enqueue), the queue item is sent out immediately.

UPC Queue enqueue/dequeue operation is explained in detail
in Figure 2. The diagram depicts the scenario when coalescing is
enabled. When UPC application invokes upc_queue_enqueue, the
queue item is buffered into the respective bucket for the target. This
is indicated as (1) in the figure. When the bucket is full or, when an
explicit upc_queue_flush is invoked, the bucket is sent over active
message to the target UPC thread (2). Active message handler at the
target side enqueues this into the queue (3). When the application
layer at target side invokes upc_queue_dequeue, the queue item is
dequeued from the queue and is given to the application (4).

The maximum payload that an active message can carry differs
for different GASNet network conduits. It is determined based on
performance tuning and conduit level optimizations. If the queue
item size or the coalesced size is greater than the maximum payload
it can carry, it is sent out in chunks. These chunks are reassembled
at the receiver side, during the active message handling.

User level active message libraries like AM++ [31] have been
proposed. Queue operations can also be implemented over such
active message libraries. In this approach, the translation of en-
queue/dequeue operations into active messages, handling of active
messages, etc. need to be handled in the UPC application layer.
This stands against our design consideration of programmability.
Another aspect is performance. Active message libraries imple-
mented over MPI libraries impose software overheads from MPI
stack, whereas in our approach, the active messages are imple-
mented directly over the GASNet, which does not impose addi-
tional overheads.

In this work, we focus on the concept of queues in UPC and how
this can used to implement applications with irregular access pat-
terns, in an efficient manner. We implemented queues in UPC run-
time layer to demonstrate the usability and performance improve-
ments. Using efficient compiler translation techniques, the queue
concept can be implemented in sync with UPC language constructs.

UPCApp  upc_gueue_enqueue(Ty,data) upc_gqueue_dequeue(&data)

(1)7 ,,,,,,,,,,,,,,

UPC o -t

Runtime g % %
v n-

GASNet i@ T
System y

(UPC Thread x)

(UPC Thread y)

Figure 2. Enqueue/Dequeue operation in UPC Queue

6. Redesigning Applications using UPC Queues

In this section, we demonstrate how queues can be used to design
UPC applications for better performance and scalability. We do
this by re-designing two popular graph benchmarks: Graph500 [3]
and Unbalanced Tree Search (UTS) [27]. Both these benchmarks
exhibit irregular communication pattern but represent two different
use cases for queues. For each of these benchmarks, we first present
an overview and a description of their current implementations.
Then, we discuss their implementation using queues.

6.1 Graph500

In this section, we first describe the communication characteristics
of Graph500 concurrent search benchmark and then describe the
reference MPI implementation. We introduce the UPC version of
concurrent benchmark and then present the version using queues.
Concurrent search benchmark does Breadth First Search (BFS)
traversal on a given graph. The graph is stored in a compressed row
format and is distributed across the processes/threads, each pro-
cess/thread owning a subset of vertices. Process owning the root
vertex starts the traversal by exploring the neighbors of the root. If
the newly discovered vertices are local, they are marked for traver-
sal. If a discovered vertex is not local, the owner process is notified
which marks the vertex for traversal. The communication in this
benchmark involves a large number of small messages, exchanged
in an irregular manner depending on the connectivity of the graph.

Reference Implementation using MPI: In the reference imple-
mentation of Graph500 using MPI, concurrent search is imple-
mented using two queues, ‘new_queue’ and ‘old_queue’ and the
traversal happens in a level-based fashion. At each level, vertices
from old_queue are dequeued and their adjacent vertices are ex-
amined. If the newly discovered vertex is local, it is added into
new_queue. Otherwise, notification is sent to the owner process in
the form of a MPI message. On receiving a message, the process
checks if this vertex has been already visited. If this vertex is un-
visited, this is enqueued to its new_queue. Or else, it is ignored.
This benchmark uses message coalescing for optimizing the com-
munication performance. Notification of newly discovered vertices
destined to a single remote process are aggregated locally, and are
sent in one MPI_Send.

End of level is identified when all the vertices in old_queue have
been processed. All processes synchronize at the end of each level
to check to see if there are any new nodes to be visited. This is
done by performing an MPI_Allreduce on the number of elements
in new_queue. If the new_queue is empty in all the processes, the
traversal is considered as complete. Otherwise, new_queue and
old_queue are swapped and the traversal continues to the next step.
A detailed description of the benchmark can be found in [3].

UPC Version Using Notification Array: Since UPC reference im-
plementation is not available in Graph500 benchmark suite, we im-



plemented the UPC version based on the specification. To the best
of our knowledge, this is the first UPC version of Graph500 bench-
mark. In this benchmark, we implement the new_queue as a shared
array so that any UPC-thread can enqueue vertices remotely. We
used coalescing of vertices, similar to that of MPI reference imple-
mentation. Coalescing is one of the the key methods for improving
communication efficiency in PGAS models [11], [32]; because
each shared array access will involve considerable communication
cost when it is on a remote node. We used a coalescing size of 4KB
in our implementation same as that of MPIL. Other optimization
techniques mentioned in [11] such as ‘circular’ and ‘local copy’
are also being used. In this implementation, the enqueues to remote
UPC thread is done using upc_memput. It uses a separate shared
array for notification of incoming enqueue. We refer to this version
of benchmark as ‘UPC (notification array)’ in the rest of the paper.

UPC Version using Queues: We enhanced Graph500 by using the
proposed UPC queues to implement new_queue. Since queues pro-
vide in-built coalescing, we used this feature. We used the same
bucket size as that of the ‘UPC (notification array)’ version of
benchmark. Vertices are enqueued to remote UPC-threads using
upc_queue_enqueue call, and receiver UPC-thread dequeues it us-
ing upc_queue_dequeue (used in non-blocking mode). At the end
of each level, upc_queue_flush calls are made to flush out any
pending enqueue operations. This version reduces the complexity
of the application as it frees the developer from handling explicit
notification and from designing optimization techniques like coa-
lescing. This version is indicated as ‘UPC (queue)’ in the experi-
mental results section.

6.2 UTS

In this section, we demonstrate yet another use case for queues.
We use queues for sending and receiving control messages in UTS
benchmark. We first describe the existing UPC version that was
introduced in Section 4.5. Then, we show how it can be enhanced
using queues.

The UTS benchmark performs an exhaustive search on an
implicitly defined tree. As tree construction happens during the
traversal, it is common for the tree to grow much faster at some
processes/threads than at others. This demands dynamic load bal-
ancing to keep all the processors busy. The processes that become
idle send out work requests to their peers in a cyclic order. These
requests are serviced by threads which have enough work to dele-
gate. As the distribution of work is irregular, the exchange pattern
of work requests and responses ends up being quite random. The
size of these packets is small, as they contain control and address
information and not the actual data.

Existing UPC Version: We present the existing UPC version of
UTS benchmark here. This implementation has been extensively
optimized using techniques presented in [25-27], and is called
‘uts_upc_enhanced’ in the UTS benchmark suite. In this implemen-
tation, threadQ starts the search from the root vertex. As traversal
progresses, the tree is constructed on the fly and the newly identi-
fied vertices are added to a shared stack. A thread that is idle sends
work requests to other threads starting with the thread whose id is
one greater than its own. The work request is made by putting its
own id into a lock-protected shared variable in the remote thread’s
memory. Working threads check the shared variable periodically
for work requests. If there is enough work to share, they delegate
work to the requester thread by modifying another shared variable
in that thread’s memory. If a work request is denied, the requester
thread will continue requesting other threads. If it identifies that
some thread is willing to share work, then the vertices (work) are
fetched using a upc_memget operation. The benchmark exits when

the graph traversal is done. A detailed description about this bench-
mark operation is provided in [25]. This benchmark is denoted as
‘UPC (base version)’ in the performance evaluation section.

UPC Version with Proposed Queues: We enhanced the UTS
benchmark to use queues for control messages. In this version, UPC
threads make use of queues for work requests and replies, instead
of using lock protected shared variables. When an idle thread wants
to request work, it does so by enqueueing a work request to a busy
thread. Busy threads check queue periodically for incoming work
requests. Willingness or unwillingness to share work is indicated
to the requester thread by enqueueing a work response packet to
the requester thread. Actual work is transferred using upc_memget
operation, as in the case of the ‘uts_upc_enhanced‘ version. This
version of the benchmark is indicated as ‘UPC (queue)’ in the
performance results. All other parameters and configurations, such
as polling frequency, work share size, etc are exactly the same as
that of the ‘uts_upc_enhanced* variant.

7. Experimental Results

Here, we compare the performance of the proposed UPC queues
with that queue operations implemented using existing primitives
in UPC. We considered UPC queue implementation using resource
replication with shared notification arrays and using UPC lock
primitives. We evaluate these using representative benchmarks and
then discuss how UPC applications can benefit using queue ap-
proach. We start with describing the experiment platform followed
by micro-benchmark and application evaluations.

7.1 Experimental Platform

We used an Intel Westmere cluster for our experiments. This clus-
ter consists of 144 compute nodes with Intel Xeon Dual quad-core
processor nodes, operating at 2.67 GHz. Each node has 12GB of
memory and is equipped with MT26428 QDR ConnectX HCAs
(36 Gbps data rate) with PCI-Ex Gen?2 interfaces. The nodes are
interconnected using 171-port Mellanox QDR switch. The oper-
ating system used is Red Hat Enterprise Linux Server release 5.4
(Tikanga), with kernel version 2.6.18-164.el5 and OpenFabrics ver-
sion 1.5.1.

We used Berkeley UPC version 2.12.2 [20] for micro-benchmark
and application performance evaluation. This is the latest avail-
able Berkeley UPC version. In all the experiments, we used single
UPC thread per process configuration mode. We used GASNet-
UCR conduit for benchmark evaluation and both GASNet-UCR
and GASNet-IBV conduits for application performance evalua-
tion. GASNet-UCR is the GASNet InfiniBand conduit proposed
by OSU in [18] and GASNet-IBV is the native GASNet InfiniBand
conduit, implemented over InfiniBand verbs API’s. The research
in [18] states that GASNet-UCR performs identical to that of the
GASNet-IBV conduit in UPC level evaluations. The MPI library
used in micro-benchmark evaluation is MVAPICH Library [23].

7.2 Micro-benchmark Performance

In this section we compare the performance of enqueue-dequeue
operations in the proposed UPC Queues with that of implementa-
tions using existing alternatives for synchronization. We first give
an overview of the different alternatives considered. Then we pro-
vide details about the benchmark and finally present the experimen-
tal results.

A common way to implement queue operations in UPC is using
shared arrays and UPC locks. Even though the implementation is
simple and it matches with the shared-memory programming style,
such a design will not scale because of the lock contention. In the
case of distributed-memory architectures, it involves a considerable



communication cost. Another way to implement queues is by keep-
ing dedicated regions in shared array for each of the remote threads
and using shared notification arrays. The enqueue operation is no-
tified using the notification array, which is also a shared array. A
UPC thread polls the notification array for checking if there are
any enqueue operations made by remote threads. The part of noti-
fication array that each thread polls, is local to itself so that no net-
work operation is involved during polling. We included this design
in micro-benchmark evaluation. This design is denoted as ‘UPC
(notification array)’ in the graphs.

Another way for implementing the queues in UPC is using MPI
Send/Receive semantics (a hybrid UPC+MPI model). Enqueues
and dequeues can be translated as MPI_ISend and MPI_IRecv calls,
respectively. Even though this approach looks simple, it imposes
overhead from MPI software stack. This is denoted as ‘MPI’ in the
graphs.

Benchmark: Our benchmark aims to characterize performance
and scalability behavior of the different schemes discussed above.
In this benchmark, every UPC thread enqueues to thread0, and
thread0 on dequeueing this element, enqueues it back to the remote
thread. This pattern is characteristic of real world data intensive ap-
plications where multiple threads can simultaneously communicate
with a single thread. As the number of threads increases, the con-
tention at threadO will help evaluate performance of the different
schemes in these scenarios. Each thread enqueues 1,000 elements.
We measure the average time for a single enqueue-dequeue opera-
tion.

Latency: Figure 3 compares the average time of an enqueue-
dequeue operation for different queue item sizes. We conducted
this experiment for different number of UPC threads. Results indi-
cate that UPC (queue) implementation performs better than other
designs, for all the message sizes. In the experiment with 128 UPC
threads, enqueue-dequeue operation using the proposed queues in
UPC achieves 94% lower latency when compared to an implemen-
tation using locks, for a payload of 128 Bytes. We see 74% lower
latency when compared to an implementation using replication.

Scalability: Figure 4 presents the performance of queues from a
scalability perspective. It shows the performance cost of enqueue-
dequeue operation for a specific queue item size (128 byte), for
varying number of UPC-threads. The number of UPC threads is
plotted on X-axis and the time for enqueue-dequeue operation
is plotted on Y-axis. Results indicate that proposed UPC queue
implementation scales the best.

Micro-benchmark evaluations clearly state that UPC queues do
perform much better as compared to other queue implementations.
It also highlights that this design does not introduce any overhead
even as the number of UPC threads increases.

7.3 Graph500 Benchmark Performance

We used Graph500 version 1.2 for our experimental evaluation. We
ran the benchmark for an input graph with 16 million vertices and
256 million edges, for varying number of system sizes, 64, 128,
256, 512 and 1,024 UPC-threads. We conducted this experiment
with both the high performance InfiniBand GASNet conduits for
UPC, GASNet-IBV and GASNet-UCR. Results of these conduits
are indicated with ‘[ibv]” and ‘[ucr]’ postfixes, respectively.
Performance results of Graph500 application are presented in
Figure 5(a). Results show tremendous performance improvement
for the queues version, as compared to the base version. This is be-
cause of the fact that, in queues design, we eliminate polling cost
and the cost for extra message for notification. Since Graph500 is
a data intensive benchmark, these costs are quite visible. Results

3000
=0=UPC(queue)

2500 «=MPI

2000 UPC (notification array)
g =»=UPC (locks)
v 1500
£
=

1000

500

o . v- — — J—%

4 8 16 32 64 128 256
Number of processes

Figure 4. Performance comparison of enqueue-dequeue operation
in different implementations of queues, for a 128 byte queue item,
on varying system sizes

indicate that for a 1,024 UPC-thread run, UPC queues design ob-
tains 30% improvement over the notification array design for both
GASNet-IBV and GASNet-UCR conduits. For a 512 UPC-thread
run, we observe about 44% and 48% improvement for GASNet-
IBV and GASNet-UCR conduits, respectively. We observe that the
BFS time increases with the number of threads beyond 256 threads.
This is because of the strong scaling used in this experiment.

7.4 Unbalanced Tree Search Benchmark Performance

Figure 5(b) shows the performance comparison of UTS benchmark
(denoted as ‘UPC (base version)’) and our version using queues.
We used UTS Benchmark suite v1.1 for our evaluation. The bench-
mark was run with an input graph of 270 billion nodes (indicated as
T1WL in the benchmark specification). We ran this experiment for
different number of UPC-threads - 64, 128, 256, 512 and 1,024.
Each of these were run using the InfiniBand GASNet conduits,
GASNet-IBV and GASNet-UCR. We observed performance im-
provement for both these conduits with the queue based design.
For a 512 UPC-thread run, queue version performs better than
the ‘uts_upc_enhanced’ version by around 10% for both the con-
duits. For 1024 UPC-thread run, the performance gain is around
14% for GASNet-UCR conduit and 12% for GASNet-IBV conduit.
The main reason for performance improvement is that we avoid
the lock contention cost. On top of that, every lock or unlock op-
eration results in a network communication. So for each request,
there will be two network communication, whereas queue design
requires only one network communication, which is the actual en-
queue operation. We did not see much performance improvement
for UTS benchmark as compared to the Graph500. This is because
UTS benchmark is highly optimized. The lock access pattern in
UTS is such that every UPC thread first tries to acquire the neigh-
boring thread’s lock. This reduces contention among threads. We
observed effects of strong scaling beyond 128 threads, similar to
those observed with the Graph500 benchmark.

8. Conclusion

In this work, we introduce Queues in UPC to address contention
and polling overheads in data intensive and irregular applications.
We present the design and implementation of UPC Queues. We
compare the performance of queues with that of alternative mech-
anisms currently available in UPC using micro-benchmark evalua-



80 - =#=UPC(queue) =&=MPI 700 » 1600
UPC(notification array) =>=UPC(locks) 600 | .—,___.,_.__/——/ 1400 - —___—/——————“_’
60 . 500 A 1200
= 1000 |
El 400
240 - 800 |
E 300 600
20 - 200 400
100 200 -
o [0 | | " | opog ootV | |8V
1 2 4 8 16 32 64 128 256 512 1K 2K 1 2 4 8 16 32 64 128 256 512 1K 2K 1 2 4 8 16 32 64 128 256 512 1K 2K
Size (bytes) Size (bytes) Size (bytes)
(a) 8 processes (b) 64 processes (c) 128 processes
Figure 3. Performance comparison of enqueue-dequeue operation in different implementations of queues
10 - 180 -
X UPC (base version) [ibv
| W UPC (notification array) [ibv] 160 ( ) libv]
9 e W UPC (base version) [ucr]
g - W UPC (notification array) [ucr]
140 UPC (queue) [ibv]
] P i
7 UPC (queue) [ibv] 120 W UPC (queue) [ucr]
© 6 - & UPC (queue) [ucr 9
g6 (q ) [ucr] 8 100
2
g g 80
= 4 =
60 |
3
5 ] 40
14 20
0 4

64p 128p 256p
No. of processes (8per node)

512p 1024p

o
4

64p 128p 256p 512p
No. of processes (8per node)

1024p

(a) Graph-500

(b) Unbalanced Tree Search (UTS)

Figure 5. Application Performance

tion. Finally, we demonstrate how the use of queues in data inten-
sive applications by modifying two upcoming Graph benchmarks:
Graph500 and UTS. Experimental results indicate that queue ver-
sion for Graph500 outperforms the naive implementation by around
44% and 30% for 512 and 1024 UPC-thread runs, respectively.
Performance improvements of queue variation of Unbalanced Tree
Search (UTS) benchmark over the current version are about 14%
and 10% for similar scale runs, respectively.

In this paper we emphasize on the Queue concept and demon-
strate how data intensive and irregular applications can be re-
designed using Queues. We would like to continue our work and
propose extensions to UPC Language constructs for Queue opera-
tions, by making use of UPC compiler translations.

9. Acknowledgments

This research is supported in part by U.S. Department of Energy
grants #DE-FC02-06ER25749 and #DE-FC02-06ER25755; Na-
tional Science Foundation grants #CCF-0833169, #CCF-0916302,
#0CI-0926691 and #CCF-0937842; grants from Intel, Mellanox,
Cisco, QLogic, and Sun Microsystems; Equipment donations from
Intel, Mellanox, AMD, Appro, Chelsio, Dell, Microway, QLogic,
and Sun Microsystems.

We thank Dr. Xavier Besseron, Dr. Jerome Vienne and Dr. Hao
Wang for their valuable support and feedback for this work.

References
[1] Cray XMT Architecture. http://www.cray.com/products/XMT.
aspx.
[2] The Graph500 List. http://www.graph500.org, .

[3] Graph500 Specification. http://www.graph500.org/specifica
tions.html, .

[4] GNU Unified Parallel C . http://gcc.gnu.org/projects/gupc
.html.

[5] J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation
algorithm. Nature 324 (1986), 446449.

[6] C. Barton, C. Cascaval, G. Almadsi, Y. Zheng, M. Farreras, S. Chatter-
jee, and J. N. Amaral. Shared memory programming for large scale
machines. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN con-
ference on Programming language design and implementation, pages
108-117, New York, NY, USA, 2006. ACM. ISBN 1-59593-320-4.
doi: http://doi.acm.org/10.1145/1133981.1133995.

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing Band-
width Limited Problems Using One-Sided Communication and Over-
lap. In Int’l Symposium on Parallel and Distributed Computing
(IPDPS), 2006.

[8] B. Chamberlain, D. Callahan, and H. Zima. Parallel Pro-
grammability and the Chapel Language. [Int. J. High Perform.
Comput. Appl., 21(3):291-312, 2007. ISSN 1094-3420. doi:
http://dx.doi.org/10.1177/1094342007078442.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In OOPSLA ’05: Pro-
ceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
519-538, New York, NY, USA, 2005. ACM. ISBN 1-59593-031-0.
doi: http://doi.acm.org/10.1145/1094811.1094852.

[10] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-
Ghazawi, A. Mohanti, Y. Yao, and D. Chavarria-Miranda. An eval-
uation of global address space languages: co-array fortran and unified
parallel c. In Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, PPoPP *05, 2005.

[11] G. Cong, G. Almasi, and V. Saraswat. Fast PGAS Implementation of
Distributed Graph Algorithms. In Super Computing (SC), 2010.

[7

—

[9

—



[12] D. Eastlake and J. P. US secure hash algorithm 1 (SHA-1). In RFC
3174, Internet Engineering Task Force, 2001.

[13] Editor: Dan Bonachea. GASNet specification v1.1. Technical Report
UCB/CSD-02-1207, U. C. Berkeley, 2008.

[14] Environmental =~ Molecular ~ Sciences Laboratory and Pa-
cific Northwest National Laboratory. The GA Toolkit.
http://www.emsl.pnl.gov/docs/global/.

[15] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating
CUDA Graph Algorithms at Maximum Warp. In /6th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, 2011.

[16] IBM. Message  Passing  Interface  and  Low-
Level Application Programming Interface (LAPI).
http://www-03.ibm.com/systems/software/parallel/
index.html.

[17] InfiniBand Trade Association. InfiniBand Industry Standard Specifi-
cation. http://www.infinibandta.org/.

[18] J. Jose, M. Luo, S. Sur, and D. K. Panda. Unifying UPC and MPI
Runtimes: Experience with MVAPICH. In Fourth Conference on
Partitioned Global Address Space Programming Model (PGAS), Oct
2010.

[19] S. Kumar, G. Dozsa, G. Almasi, D. Chen, M. E. Giampapa, P. Hei-
delberger, M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. Smith,
and C. Archer. The Deep Computing Messaging Framework: Gener-
alized Scalable Message Passing on the Blue Gene/P Supercomputer.
In Proceedings of the 22nd annual international conference on Super-
computing (ICS), 2008.

[20] Lawrence Berkeley National Laboratory and University of Cal-
ifornia at Berkeley. Berkeley UPC - Unified Parallel C.
http://upc.1lbl.gov/.

[21] D. Loveman. High performance Fortran. Parallel Distributed Tech-
nology: Systems Applications, IEEE, 1(1):25 —42, feb. 1993. ISSN
1063-6552. doi: 10.1109/88.219857.

[22] M. Luo, J. Jose, S. Sur, and D. K. Panda. Multi-threaded UPC
Runtime with Network Endpoints: Design Alternatives and Evaluation

on InniBand Clusters. In /8th Annual International Conference on
High Performance Computing (HiPC), 2011.

[23] Network-Based =~ Computing  Laboratory. MVAPICH:
MPI over InfiniBand, 10GigE/iWARP and RoCE.
http://mvapich.cse.ohio-state.edu/.

[24] R. Nishtala, P. Hargrove, D. Bonachea, and K. Yelick. Scaling
Communication-Intensive Applications on BlueGene/P Using One-
Sided Communication and Overlap. In Int’l Symposium on Parallel
and Distributed Computing (IPDPS), 2009.

[25] S. Olivier and J. Prins. Scalable Dynamic Load Balancing Using
UPC. In Proceedings of 37th International Conference on Parallel
Processing (ICPP), 2008.

[26] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and
C. Tseng. UTS: An Unbalanced Tree Search Benchmark. In Proceed-
ings of 19th Intl. Workshop on Languages and Compilers for Parallel
Computing (LCPC), 2006.

[27] J. Prins, J. Huan, B. Pugh, C. Tseng, and P. Sadayappan. UPC
Implementation of an Unbalanced Tree Search Benchmark. Technical
Report 03-034, UNC Dept. of Computer Science.

[28] J. Savant and S. Seidel. MuPC: A Run Time System for Unified
Parallel C. Technical Report CS-TR-02-03, Department of Computer
Science, Michigan Technological University, 2002.

[29] H. Subramoni, P. Lai, M. Luo, and D. K. Panda. RDMA over Ethernet
- A Preliminary Study. In Proceedings of the 2009 Workshop on
High Performance Interconnects for Distributed Computing (HPIDC),
20009.

[30] UPC Consortium. UPC Language Specifications, v1.2. Technical
Report LBNL-59208, Lawrence Berkeley National Lab, 2005.

[31] J.J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine. AM++:

A Generalized Active Message Framework. In Nineteenth Interna-
tional Conference on Parallel Architectures and Compilation Tech-

niques (PACT), Sep 2010.

[32] J. Zhang, B. Behzad, and M. Snir. Optimizing the Barnes-Hut Algo-
rithm in UPC. In http://hdl.handle.net/2142/18699, 2011.



