
Comparing UPC and one-sided MPI:
A distributed hash table for GAP

C.M. Maynard

EPCC, School of Physics and Astronomy, University of Edinburgh,
JCMB, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK

c.maynard@ed.ac.uk

Abstract
The GAP (Groups, Algebra and Programming) software is
an interpreted programming language for symbolic algebra
computation. It also provides a library of mathematical func-
tionality. A key computational pattern for the GAP commu-
nity is the orbit problem, that of a group acting upon a set.
Computationally this maps onto the graph discovery prob-
lem. The enumeration of very large orbits corresponds to the
traversal of a graph with billions of vertices. A hash table
is used to check whether a vertex has been visited before
during the computation. The large memory requirements of
such a computation necessitates using a distributed memory
machine.

Building a parallel version of GAP is the goal of the HPC-
GAP project. Message passing (MPI) and PGAS (UPC) are
considered as the models for parallelisation. UPC has some
advantages over MPI as some of the data structures antic-
ipated in a parallel implementation of GAP can be simply
constructed as shared objects in a PGAS model. Moreover,
some of the communication patterns are not suited to the
synchronous send and receive model of message passing.
For example, in a parallel implementation of a hash table,
the task or thread which computes the hash of an object, then
knows the table entry and thus whether hash table access is
remote or local. For MPI, the usual send - receive mecha-
nism is compromised because the receiving rank cannot de-
termine when, and from whom a message is to be passed.
One-side MPI communications can be used to circumvent
the problem. Windows of remote access memory are cre-
ated, and guarded by locks. In UPC, the natural, shared ar-
rays are used, again guarded by locks, However, the locking
strategy for MPI and UPC is different. In this paper, the per-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PGAS 2011 15-18 Oct, Galveston Island, USA
Copyright c© 2011 ACM [to be supplied]. . . $10.00

formance of a distributed hash table implemented in UPC
and one-sided MPI in a C code using the Cray compiler on
an XE6 machine is compared, and UPC found to have better
performance. Thus confirming UPC as the choice of parallel
model for HPCGAP.

1. Introduction
Symbolic algebra is not a traditional consumer of HPC re-
sources. Indeed, most if not all of the computation processes
integer data types rather than floating point data types, which
are more commonly used in numerical computing. Floating
point performance, as measured by flop/s and used to quan-
tify the performance of a HPC system, is therefore not a rel-
evant measure for a symbolic algebra calculation. However,
symbolic algebra calculations do require large amounts of
computer memory. For some large calculations the memory
for even server sized systems can be exhausted, thus limiting
the size of a calculation. A distributed memory parallel com-
puter can offer much greater memory than a single machine
and thus problems of much greater size can be tackled.

The GAP software system [1], is an interpreted software
for symbolic algebra computations, written in C. It com-
prises of a kernel, which runs a cycle, creates and destroys
objects and manages the memory. It has a large library with
rich mathematical functionality, which operates on the ob-
jects. Packages with functionality not already contained in
the library can be loaded. These packages may contain struc-
tural functionality, for example input and output, or a mes-
sage passing package, or even mathematical functionality.
The HPCGAP project1 is implementing a parallel version
of GAP for tightly coupled HPC machines. A complimen-
tary project, called SymGridPar2 [2], is also implementing
parallel symbolic algebra calculations by linking parallel
Haskell [3] with many individual instances of GAP. In con-
trast to HPCGAP, this software targets loosely coupled ar-
chitectures of grids or clouds.

As implied by its name, Group theory calculations are
one of the targets for HPCGAP. A particular problem, called

1 see http://www-circa.mcs.st-and.ac.uk/hpcgap.php

the orbit problem [4], is of interest to the symbolic algebra
community. The problem is the calculation of the orbit of
a setm acting on a groupg. This calculation corresponds
to a graph traversal problem, where at each vertex of the
graph some computation of properties of the vertex is re-
quired, including the determination of which other vertices
the vertex is connected. Keeping track of whether a vertex
has been visited before is done by employing a hash table.
Current orbit calculations are limited to certain size of group
the amount of memory available in serial. A parallel imple-
mentation of the algorithm would allow much larger orbits,
corresponding to graphs with billions of vertices, to be com-
puted. The characteristics of the distributed hash table, such
as what fraction total memory does the table consume and
how often are entries accessed would depend on both the
group and the set acting upon it. Current serial implementa-
tions are unable to perform such calculations. A parallel im-
plementation would enable a completely new class of prob-
lems to be solved, rather than improving the performance on
current problems. A distributed implementation exists fora
loosely coupled cluster, using multiple instances of different
programs over UNIX sockets and exploiting task rather than
data parallelism and is reported in [5]. However, for a HPC
implementation on supercomputers a different approach is
merited.

There are two parallel models of HPC which could be
used to parallelise GAP. Message passing with MPI would
be a standard approach, and a PGAS model employing UPC
would be the alternative approach. The orbit problem is a
critical use case for HPCGAP, so the performance of MPI
and UPC for a distributed hash table is used as a design
discriminant for the programming model. In this paper we
report on the performance of a hash table coded in C, and
then parallelised using UPC and MPI. This is used to decide
which programming model will be used in HPCGAP.

2. Implementation of a distributed hash table
In order to measure and compare the performance of MPI
and UPC a simple hash table C code was used as a demon-
strator. This C code creates integer typed objects from some
random element, computes the hash of the object using a
suitable hash function, and inserts a pointer to the object into
the hash table. If a pointer to a different object is already res-
ident, the collision counter is incremented and the pointerin-
serted into the next unoccupied table entry. The code repeats
this process so that the populated hash table can be probed,
thus the performance of both creation and access of the hash
table can be measured. There are three points to note, firstly,
the amount of computation is small compared to the memory
access. The code is completely memory bound and therefore
the performance of a parallel version would be communi-
cation bound. Secondly, to reduce the amount of memory
transactions in the serial code, thepointerto the object is in-
serted into the hash table, not the object itself, thus reducing

the amount of memory access required. In a parallel version,
some of the pointers would point to remote objects, which
would be undefined locally. Thus in a parallel version, the
object itself must be stored in the hash table. This has the
consequence of further increasing the communication costs.
For the UPC version, a model where asharedpointer to
a sharedobject can be envisioned. Indeed, this could even
have less remote memory access (RMA) operations if the
pointer is smaller than the object and thus be faster. How-
ever, this would consume more of the shared memory, as
both the object and the pointer live in the shared space. From
the perspective of comparing UPC with MPI, they would no
longer be doing the same thing, and this model was not con-
sidered for this paper. Thirdly, the cost of RMAs is greater
than local memory accesses, so the parallel code will be
slowerthan the serial one. However, the motivation is not to
execute existing programs faster, but allow larger hash tables
to be created in parallel than can be done in serial. Moreover,
in a real orbit calculation a significant amount of calculation
is required for each element, and by performing the calcu-
lation in parallel it would be possible to reduce the overall
execution time.

2.1 One-sided MPI

The usual send and receive communication pattern used in
MPI codes is not well suited to a distributed hash table. The
hash of the object is used to identify the rank of the MPI task
which owns that entry in the hash table. However this node
has no way of identifying the rank of an MPI node it is about
to receive data from. Indeed, none, one or more tasks may be
trying to send a message to a given node at any given time.
MPI tasks could be set up to poll for incoming messages,
but this would have extremely poor scaling behaviour. In the
MPI 2 standard one-sided communication was introduced,
which can be employed to negate this requirement. The one-
sided MPI communications perform RMA operations. These
RMA operations can only access memory which has been
specifically set aside inwindow. The memory has to be
allocated first, and then the window containing the memory
is created with a call to the MPI function,MPI_Win_create.
Shown in Figure 1 is the memory pattern created. In the
figure, the size of the arrays on each rank contained in the
window is shown to be the same, but this doesn’t have to be
the case.

The memory contained in the window can now be ac-
cessed byputandgetfunctionsMPI_put()andMPI_get().
Both the rank and position of the memory location can be
specified so that individual words can be accessed.

Synchronisation can be controlled by several mecha-
nisms. For the implementation employed here, an MPI bar-
rier function, MPI_Win_fence(), is used during initiali-
sation. Locks are deployed to control access to the RMA
memory window and prevent race conditions. The lock is
set using theMPI_Win_lock() function, specifying which
RMA window and which task’s memory are locked. All the

Figure 1. A schematic diagram of the memory pattern for
one-sided MPI.

memory assigned to the window belonging to the locked task
is unaccessible to other task until the task is unlocked. The
memory can now be accessed by the MPI task holding the
lock, and is released with theMPI_Win_unlock() function.

2.2 UPC

The UPC implementation uses shared memory for the dis-
tributed hash table. In this example the memory is allocated
dynamically using the collective callupc_all_alloc(). In
contrast to the MPI version, the shared memory is address-
able and doesn’t require any special functions to access it.
Moreover, memory allocated in this way is contiguous. The
pointer declaration and memory allocation are shown below:

shared [B] int *hashtab;

int nobj;

nobj=2*N/THREADS+1;

hashtab = (shared [B] int *) \

upc_all_alloc(THREADS,nobj*sizeof(int));

whereN is a run time variable. The blocking factorB how-
ever, is a literal, which has to be known at compile time. The
environment variableTHREADS, is evaluated at run time if
the code is compiled dynamically. Setting the size and shape
of shared arrays in UPC is critical to achieving good perfor-
mance, so as to minimise the amount of remote memory ac-
cess. A common procedure to match the compile time block-
ing factor with the run time number of threads is to compile
different binaries for different numbers of threads. A feature
of the hash table is that if the hash function is good enough,
the access pattern to the table is essentially random. This
implies thatanyarray distribution is as good as any other, so
the default round-robin distribution, with no blocking factor,
is employed. Specifically, this means sequential memory ad-
dresses in the shared array reside on different threads. Shown
in Figure 2 is a schematic diagram of the memory allocation
and distribution with no blocking factor.

Synchronisation of the threads is achieved in a similar
way to one-sided MPI. The functionupc_barrier is used

Figure 2. A schematic diagram of the memory pattern for
UPC.

after the initialisation and locks are used to protect against
race conditions. In UPC, an array of locks can be declared
and in our implementation, the non-collective UPC function
upc_global_lock_alloc() is used to allocate memory to
the locks. The non-collective function was used for perfor-
mance. When using the collective version, all the locks live
in shared memory on thread zero. The size of the array of
locks can in principle be any size (up to the total amount of
shared space). In this implementation the size was set to the
number of threads, thus an entire thread’s worth of data is
locked in one go. In principle, a much finer grained locking
strategy could have been implemented, which may result in
improved performance at the cost of consuming more of the
shared memory allocation. To start with at least, the simplest
implementation was deployed. Moreover, the pointer func-
tionupc_threadof() is used to determine which thread the
hash table entry belongs to.

3. Performance Comparison
The code was compiled with the Cray Compiler Environ-
ment (CCE) version 7.3.1 on an XE6 called HECToR, the
UK national supercomputing service2. CCE supports UPC
and directly targets the Cray XE6’s hardware support for
Remote Direct Memory Access (RDMA) operations. Each
compute node contains two AMD 2.1 GHz 12-core proces-
sors and the communications network utilises Cray Gemini
communication chips, one for every two compute nodes.

For each run, the size of the integer object from which
the hash table is made is set at eight bytes, the hash table
visited four times (once for creation, three times thereafter),
with a varying numbers of elements in the hash table. In the
first instance, we report on weak scaling, that is, where the
number of elements per processing element is fixed. Shown
in Table 1 are the times in seconds taken to execute the MPI
distributed hash table. The table is divided into two, the data
in the top section were measured from runs on a smaller test
and development XE6, with only 32 nodes, 768 cores. The
reported data is the mean of 10 runs, with the error estimated
from the standard deviation. The data in the bottom section

2 http://www.hector.ac.uk/

was taken from runs on HECToR. The data from the top
section is plotted in Figure 3.

MPI Time (s) / LV (thousand)
tasks 10 25 50 100

12 0.98(8) 1.45(8) 2.4(1) 4.39(7)
24 1.02(5) 1.66(3) 2.9(1) 5.39(4)
48 3.6(2) 6.8(3) 11.9(2) 22.5(3)
96 4.7(2) 9.1(3) 17.0(2) 34.1(4)

192 5.6(3) 12.2(2) 24.9(3) 52.4(8)
384 7.07(5) 16.2(3) 35.2(7) 82.(1)
768 10.0(1) 27.4(5) 64.2(8) 161.(2)
768 9.45 24.0 54.5 132.1

1526 17.4 49.0 124.6 354.2
3072 33.1 104.5 240.4 594.1

Table 1. Time taken for MPI code in seconds, for different
numbers of processors, for different numbers of elements in
the hash table. “LV” denotes the local volume, or number
of elements in the local hash table. Upper section: data
from runs on development machine, lower section: the main
HECToR service machine.

12 24 48 96 192 384 768
MPI tasks

0

50

100

150

200

T
im

e
(s

ec
on

ds
)

LV 100K
LV 50K
LV 25K
LV 10K

Figure 3. Weak scaling for MPI. Time taken versus number
of cores, for different numbers of elements in the hash table.
“LV” denotes local volume and refers to the number of
elements local to each MPI task.

The most obvious pattern to note is that the code does not
scale, in fact the time taken increases quickly as the num-
ber of processing elements increases. As pointed out in the
introduction, this example code does almost no computa-
tion. As the number of processing elements increases, the
amount of communication increases, which in turn increases
the amount of time the code takes to run. The difference
between intra- and inter-node communication cost can be
clearly seen in Figure 3 and Table 1. It takes approximately
a factor of 4 times longer for 48 cores than for 24. There-
after, the increase in time as the number of cores increases is

less severe, but it increases none the less. The other obvious
trend from the data is that a larger local volume takes longer
to run. As the hash function produces a random distribution
across the hash table, there is no data locality, so a larger
local volume means more communication.

Shown in the bottom section of Table 1 is run time from
the main HECToR service machine. There is no difference
in hardware specification between the machines. As the vari-
ance data in the top half of the table is small, only one run
is reported for large numbers of processors. A run with 768
processors is repeated for reference and is slightly fasteron
the main machine, possibly revealing an “edge effect” on the
smaller machine. Overall the trends remain the same. This is
shown in Figure 4.

12 24 48 96 192 384 7681536 3072
MPI tasks

0

50

100

150

200

250

300

350

400

450

500

550

600

T
im

e
(s

ec
on

ds
)

LV 100K
LV 50K
LV 25K
LV 10K

Figure 4. Weak scaling for MPI. Time taken versus num-
bers of cores, for different sizes of hash table. The open
symbols denote data from run times on the main HECToR
service machine. “LV” denotes local volume and refers to
number of elements in the local hash table.

The same run parameters were used for UPC, as were
used for MPI. Shown in Table 2 are the data for the UPC
benchmark runs. In the upper section of the table, the re-
ported results are the mean of 10 runs, with the quoted error
determined from the standard deviation of those ten runs.
This data is also plotted in Figure 5.

In contrast to the MPI results, the UPC results show much
better communication performance. Whilst it takes longer to
execute the code with more processors, the increase is much
slower. This can be seen in the figure, where the lines are
much flatter. Moreover, the overall scale is much smaller,
and so at large numbers of processors the performance is
much better,i.e. the code executes much faster. The UPC
benchmark code for the distributed hash table is much faster
than the equivalent one-sided MPI code. However, as the
number of UPC threads is increased to 768, the cost starts
to increase more rapidly.

UPC Time (s) / LV (thousand)
threads 10 25 50 100

12 3.83(5) 4.90(12) 6.53(5) 9.84(9)
24 7.14(10) 8.52(10) 11.0(1) 15.9(1)
48 7.59(16) 9.98(20) 13.7(2) 21.2(2)
96 8.34(20) 11.0(3) 15.5(3) 24.5(2)

192 9.0(4) 11.8(2) 16.8(2) 26.8(1)
384 10.1(1) 13.4(2) 18.9(1) 29.8(2)
768 14.5(6) 18.2(2) 24.7(1) 36.8(1)
786 19.2 23.3 29.1 41.7

1536 54.3 57.4 66.3 84.6

Table 2. Time take for the UPC code, in seconds for num-
bers of processing elements and number of elements in the
hash table. The upper section shows data benchmark runs on
the development machine, the lower section the main HEC-
ToR service machine. “LV” denotes local volume and refers
to the number of elements in the local hash table.

12 24 48 96 192 384 768
UPC threads

0

10

20

30

40

T
im

e
(s

ec
on

ds
)

LV 100K
LV 50K
LV 25K
LV 10K

Figure 5. Weak scaling for UPC, time taken for different
numbers of threads, for different sizes of hash table. “LV”
denotes local volume and refers to the number of elements
local to each thread, the “K” denotes thousand.

Shown in the lower section of table 2 is data taken from
benchmark runs on the main HECToR service machine. As
with the MPI data, the variance in the UPC data from the
runs on smaller number of cores is small, so for the runs on
larger machine partitions, the results are reported for only
one run. These results are also shown in Figure 6. In contrast
to the MPI data, there is no UPC data for 3072 cores. This
is because a run-time environment variable cannot be set
shared memory greater than 2 TByte3. The trend observed
for large numbers of cores in Figure 5 can be clearly seen
to continue in Figure 6viz. the modest “scaling” seen for
moderate numbers of cores breaks down beyond 768 cores.
The execution time for 1536 cores takes approximately twice
as long as 768 cores.

3 Cray hope to extend this in the future.

The performance of the MPI and UPC versions can be
compared. For a small hash table at 1536 cores (local size
= 104 elements, global size =1.536 × 108) the MPI code is
much faster,17.4s for MPI compared to54.3s for the UPC
code. However, as the size of the hash table is increased, the
MPI code slows dramatically. For the largest size of hash
table examined, (local size =105 elements, global size =
1.536 × 109) the MPI code takes approximately a factor
twentytimes longer at354.2s to process the large hash ta-
ble compared to the small one. In contrast the UPC code
takes less than a factor of two longer at84.6s to process a
hash table a factor of ten larger in size. As the system size
increases, so does the number of RMA operations. It is clear
from the data that the UPC implementation is faster for large
numbers of RMA operations, arising from large numbers of
cores, or from large hash tables. However, at large numbers
of cores, the performance of the UPC implementation starts
to degrade, but for a large hash table, on such a system, the
MPI performance is significantly worse.

12 24 48 96 192 384 768 1536
UPC threads

0

20

40

60

80
T

im
e

(s
ec

on
ds

)
LV 100K
LV 50K
LV 25K
LV 10K

Figure 6. Weak scaling for UPC, time taken for different
numbers of threads, for different sizes of hash table. The
open symbols denote data from taken from benchmark runs
on the main HECToR service machine. “LV” denotes local
volume and refers to the number of elements local to each
thread, the “K” denotes thousand.

The performance of the same implementations can be
compared in a strong scaling scenario, where the global
system size is fixed, and the number of cores can be varied.
Shown in Table 3 and Figure 7 are the results for a strong
scaling analysis.

At each problem size, the benchmark was run for three
different numbers of cores. As can be clearly seen, as the
number of cores is increased for a fixed global hash table
size, the speed of execution increases. The amount of com-
municationper coredecreases, so the amount of time taken
is reduced. For the smallest hash table the curve is fairly
flat and as the code is both memory and communication
bound, increasing the number of cores further is unlikely to
increase performance, thus the benchmark was only run for

Time (s) [UPC] Time (s) [MPI]
elements (×106)

cores 4.8 9.6 19.2 4.8 9.6 19.2
48 13.7 − − 22.5 − −

96 11.0 24.5 − 17.0 34.1 −

192 9.0 16.8 26.8 12.2 24.8 52.4
384 − 13.4 18.9 − 16.2 35.2
768 − − 18.2 − − 27.4

Table 3. Time in seconds for both UPC and MPI, for differ-
ent numbers cores, at constant size of the global hash table,
for different sizes of global hash table.

48 96 192 384 768
MPI tasks / UPC threads

0

10

20

30

40

50

60

tim
e

(s
)

UPC 19,2M
MPI 19.2M
UPC 9.6M
MPI 9.6M
UPC 4.8M
MPI 4.8M

Figure 7. Strong scaling for both UPC and MPI, time in
seconds versus number of cores. The lines show constant
global size of hash table. The size of the global hash table is
shown in the legend, “M” denotes106.

a small number of cores. The largest hash table requires a
large memory allocation and is only run on the larger core
counts. Overall, the same pattern emerges, the UPC imple-
mentation is significantly faster than MPI version.

The Cray Performance Analysis Toolkit (Cray-PAT)
was used to profile the MPI implementation. Between
60% and 80% of the execution time was spent in the
MPI_Win_unlock() function. Thus demonstrating thatcon-
tentionbetween tasks,i.e. tasks trying to obtain the lock for
an already locked task, is not adversely effecting perfor-
mance. However, the MPI 2 standard does not definewhen
RMA operations take place during a the lock/unlock phase
or epoch. Merely that the lock and unlock operations de-
fine the start and end of that epoch. In this implementation
of MPI, the lock, RMA operations, are in effect buffered
until the unlock occurs, which synchronises the MPI tasks.
As measured by Cray-PAT, the most of execution time is
taken during the MPI unlock call, because this is when the
one-sided MPI functions are executed across the window.

In the MPI implementation the lock/unlock pair of func-
tions brackets each RMA operation. This potentially means

time (s)
size (bytes) UPC MPI

4 30.1 51.3
8 29.8 52.4

16 30.4 69.3
32 31.4 116.0

Table 4. Time taken for benchmark runs with different sizes
of integer objects UPC and MPI implementations. Number
of elements in the hash table set at1.92× 107 on 192 cores.

each MPI task is holding the lock is doing so for the shortest
possible time. However, the lock/unlock functions are there-
fore called several times during each transaction with the
hash table. Altering this so that a single pair of lock/unlock
functions are used to protect all the RMA operations for each
hash table transaction had at most a very small impact on the
timings. Contention between MPI tasks is not a performance
limiting factor, nor is the lock/unlock calls themselves (de-
spite the profiling results). Changing the locking strategyhas
little effect because the RMA operations dominate the time
taken, even if they are actually processed during the unlock
call.

One final set of benchmarks were run to check the perfor-
mance of the two codes. The size of the integer data object
was varied to see if the communication of smaller or larger
chunks of data effected the performance. Shown in Table 4
are the benchmark data for different data sizes for a fixed
number of cores, at a fixed size of hash table. Once again,
the UPC implementation is clearly faster than the MPI ver-
sion. Varying the size of the integer object has no effect on
the time taken for the UPC code, whereas the performance
of the MPI implementation degrades as the size of the object
increases.

4. Conclusions
The UPC implementation of the distributed hash table is
faster than the MPI implementation, except for the regime
where there is a small number of elements local to each
processor, and the regime where the global volume and the
number of MPI tasks are small. Neither regime is likely to be
accessed when processing large orbit problems. UPC scales
better with the number of processing elements for both weak
and strong scaling. Moreover, it shows better scaling both
with the number of elements in the hash table, and the size
of the objects in table. The one-sided MPI functions are not
widely used in applications, at least the author is not aware
of many, or indeed any applications using them. A possible
explanation as to why the MPI version is slow compared
to the UPC version is that whilst the implementation of
MPI itself executes the RMA operations correctly, the MPI
implementation has not been optimised due to the lack of
applications to stress the implementation. This is of course,
speculation, and may well not explain all the performance

gap, as it may be fundamental to the way MPI handles one-
sided communication. Whilst uncovering the reasons for this
would be very interesting, is not obvious to the author why
this should be so.

The UPC implementation could potentially be improved.
In UPC, the size of the array of locks could be defined the
same size as the hash table. Thus, an individual data element
could be locked rather than all the data local to a thread.
This would reduce contention. However, this is likely to be
a small gain, as the evidence from the albeit slower MPI
version is that contention is not an issue. Moreover, the locks
consume shared memory, which is needed for the hash table,
so it is not clear that this strategy would be better.

The object of this exercise was to implement a realistic
use case to decide which model of parallel programming
would be best for HPCGAP. The results are clear, and UPC
has been chosen as the model for parallelising HPCGAP.

5. Acknowledgements
The author would like to thank Max Neunhoffer at St An-
drews University for the example hash table code and the
HPCGAP project. This work was funded under EPSRC
grant EP/G055742/1

References
[1] GAP. GAP – Groups, Algorithms, and Program-

ming, Version 4.4.12. The GAP Group, 2008. URL
http://www.gap-system.org.

[2] A. Zain, K. Hammond, P. Trinder, S. Linton, H.-W. Loidl,
and M. Costanti. Symgrid-par: Designing a framework
for executing computational algebra systems on compu-
tational grids. In Y. Shi, G. van Albada, J. Dongarra,
and P. Sloot, editors,Computational Science ICCS 2007,
volume 4488 of Lecture Notes in Computer Science,
pages 617–624. Springer Berlin / Heidelberg, 2007. URL
http://dx.doi.org/10.1007/978-3-540-72586-2 90.
10.1007/978-3-540-72586-290.

[3] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and P. W.
Trinder. Seq no more: Better strategies for parallel Haskell.
In Haskell Symposium 2010, Baltimore, MD, USA, Sept. 2010.
ACM Press. URLhttp://www.macs.hw.ac.uk/∼dsg -

/gph/papers/abstracts/new-strategies.html. To ap-
pear.

[4] D. F. Holt, B. Eick, and E. A. O’Brien.Handbook of compu-
tational group theory. Discrete Mathematics and its Applica-
tions (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL,
2005. ISBN 1-58488-372-3. doi: 10.1201/9781420035216.
URL http://dx.doi.org/10.1201/9781420035216.

[5] F. Lübeck and M. Neunhöffer. Enumerating large orbitsand
direct condensation.Experiment. Math., 10(2):197–205, 2001.
ISSN 1058-6458. URLhttp://projecteuclid.org/
getRecord?id=euclid.em/999188632.

