
A PGAS-based implementation for the unstructured CFD
solver TAU

Christian Simmendinger
T-Systems Solution for

Research
Pfaffenwaldring 38-40

70569 Stuttgart, Germany
christian.simmendinger@t-

systems.com

Jens Jägersküpper
German Aerospace

Center(DLR)
Institute of Aerodynamics and

Flow Technology
38108 Braunschweig,

Germany
Jens.Jaegerskuepper@dlr.de

Rui Machado
Fraunhofer ITWM
Fraunhofer-Platz 1

67663 Kaiserslautern,
Germany

rui.machado@itwm.fhg.de

Carsten Lojewski
Fraunhofer ITWM
Fraunhofer-Platz 1

67663 Kaiserslautern,
Germany

lojewski@itwm.fhg.de

ABSTRACT
Whereas most applications in the realm of the partitioned
global address space make use of PGAS languages we here
demonstrate an implementation on top of a PGAS-API. In
order to improve the scalability of the unstructured CFD
solver TAU we have implemented an asynchronous commu-
nication strategy on top of the PGAS-API of GPI. We have
replaced the bulk-synchronous two-sided MPI exchange with
an asynchronous, RDMA-driven, one-sided communication
pattern. We also have developed an asynchronous shared
memory strategy for the TAU solver. We demonstrate that
the corresponding implementation not only scales one order
of magnitude higher than the original MPI implementation,
but that it also outperforms the hybrid OpenMP/MPI pro-
gramming model.

Keywords
Computational Fluid Dynamics, Communication libraries,
Software for communication optimization, PGAS, GPI

1. INTRODUCTION
Over the last decade PGAS languages have emerged as an al-
ternative programming model to MPI and promising candi-
dates for better programmability and better efficiency ([12]).
However, PGAS languages like Co-Array Fortran (CAF) [2]
or Unified Parallel C (UPC) [12] require the re-implemen-
tation of large parts of the implemented algorithm. Addi-
tionally - in order to deliver superior scalability to MPI -
languages like CAF or UPC require a specific data-layout,

suitable for data-parallel access. PGAS languages also re-
quire an excellent compiler framework which is able to e.g.
automatically schedule and trigger the overlap of communi-
cation and computation.

In the problem domain of CFD on unstructured grids, where
data access is predominantly indirect and graph partitioning
a science in itself [9], a compiler driven overlap of commu-
nication and computation poses quite a challenge. While
waiting for a solution from the compiler folks we have opted
for a more direct approach in the meantime.

In this work we present a parallel implementation of the
CFD solver TAU [11] on top of a PGAS-API. Similar to
MPI this PGAS-API comes in the form of a communication
library. Our approach hence does not require a complete re-
write of applications. However – in order to achieve better
scalability than MPI – the implementation requires a re-
thinking and re-formulation of the communication strategy.
We have developed an asynchronous shared memory imple-
mentation for the TAU solver which scales very well and
readily overlaps communication with computation. In addi-
tion we have replaced the bulk-synchronous two-sided MPI
exchange with an asynchronous, one-sided communication
pattern, which makes use of the PGAS space of the GPI-
API [8]. We demonstrate that the corresponding implemen-
tation not only scales one order of magnitude higher than
the original MPI implementation, but that it also outper-
forms the hybrid OpenMP/MPI programming model. For a
production sized mesh of 40 million points we estimate that
with this implementation the TAU solver will scale to about
28,800 x86 cores or correspondingly to 37 Double Precision
Tflop/sec of sustained application performance.

2. THE TAU SOLVER
In this work we closely examine the strong scalability of the
unstructured CFD solver TAU, which is developed by the
German Aerospace Center(DLR) [6] and represents one of

the main building blocks for flight-physics within the Eu-
ropean Aerospace eco-system. The TAU-Code is a finite-
volume RANS solver which works on unstructured grids.
The governing equations are solved on a dual grid, which,
together with an edge-based data structure, allows to run
the code on any type of cells.

The code is composed of independent modules: Grid parti-
tioner, preprocessing module, flow solver and grid adapta-
tion module. The grid partitioner and the preprocessing are
decoupled from the solver in order to allow grid partitioning
and calculation of metrics on a different platform from the
one used by the solver.

The flow solver is a three-dimensional finite volume scheme
for solving the Unsteady Reynolds-Averaged Navier-Stokes
equations. In this work we have used the multi-step Runge-
Kutta scheme of TAU. The inviscid fluxes are calculated
employing a central method with scalar dissipation. The vis-
cous fluxes are discretized using central differences. We have
used a 1-equation turbulence model (Spalart/Allmaras). In
order to accelerate the convergence to steady state, local-
time stepping and a multigrid technique based on agglom-
eration of the dual-grid volumes are employed.

2.1 Subdomains in TAU: colors
In order to achieve good node-local performance on cache
architectures TAU perfoms a partitioning of every MPI do-
main (which in turn are obtained by means of a domain de-
composition) into small subdomains (colors) [1]. These sub-
domains typically contain of order 100 mesh points. With a
memory footprint of 1KByte per mesh point a color typically
fits in the L2 cache. The points within these domains, as well
as the connecting faces are renumbered in a preprocessing
step in order to maximize spatial data locality. Temporal
data locality is achieved by consecutively iterating over the
colors until the entire MPI domain has been processed.

Due to this implemented coloring TAU typically runs with
around 12−25% of the double precision peak performance of
a standard dual-socket x86 node – which is quite remarkable
for the problem domain of CFD. However - the performance
of TAU depends on the used solver type, the structure of
the mesh and the specific use case.

In Table 1 we consider three different cases on a single node:
M6, F6 and Eurolift. The smallest use case M6 with 100,000
points has a total memory footprint of 100MB. With this
memory footprint the solver does not fit in the 12MB L3
cache of the used 2.93 Ghz dual socket 6-core Intel West-
mere node. Nevertheless M6 shows the best performance
of the three considered use cases. The F6 use case with
2 million points represents a mesh size per node, which is
common for production runs. This use case delivers good
performance as well. Lastly for the Eurolift 13.6 million
points the performance degrades substantially, even though
13.15% of peak performance is still a good value for an un-
structured CFD solver. However, we note that – mainly due
to the correspondingly long run times – such large use cases
are rarely used on a single node.

3. THE GPI API

GPI RDMA Fabric

RDMA

NIC 1

RDMA

NIC N

Passive
RDMA

Common Queues
Collectives Atomics Internal

GPI Modules

− Thread safety

− Thread fairness

Secondary Network (TCP)

for recovery tasks

Figure 1: GPI modules

GPI (Global address space Programming Interface) is a PGAS
API for C/C++ and Fortran applications. It focuses on
asynchronous, one-sided communication as provided by mod-
ern, RDMA-enabled interconnects such as Infiniband.

The GPI API has two main objectives. Firstly, maximum
communication performance by exploiting directly the net-
work interconnect and minimizing the communication over-
head by allowing a full communication and computation
overlap (zero-copy). The second objective is to provide a
simple API for the development of parallel applications based
on more asynchrounous algorithms and an easy to learn pro-
gramming model.

GPI is strictly a PGAS API with some similarities to (Open)Shmem.
In contrast to the PGAS languages of CAF or UPC,tthe
GPI API hence neither requires extensive modifications of
the source code nor an efficient underlying compiler frame-
work. What is however required, is a thorough rethinking
of the communication patterns of the application and a re-
formulation of bulk-synchronous data-exchange towards an
asynchronous model. The Global Arrays framework is not
really applicable to unstructured meshes, so we have not
considered it here.

3.1 Functionality of GPI
The figure 1 depicts the GPI modules organization. The
depicted modules of GPI interact directly with the intercon-
nect (one or more RDMA NICs) and expose the whole GPI
functionality.

The GPI functionality is therefore resumed in five modules:
passive communication (Passive RDMA), global communi-
cation through queues (Common Queues), collective opera-
tions (Collectives), atomic counters (Atomics) and utilities
and internal functionality (Internal).

Althought GPI focuses on one-sided communication, the
passive communication has a Send/Receive semantic that
is, there is always a sender node with a matching receiver
node. The only difference is that, and therefore the passive
term, the receiver node does not specify the sender node for
the receive operation and expects a message from any node.
Moreover, the receiver waits for an incoming message in a
passive form, not consuming CPU cycles. On the sender
side, the more active side of the communication as it speci-

Table 1: Node-Local performance of TAU
Use Case Mesh Points Gflop/sec/node (Double Precision) % of Peak (Double Precision)

M6 100,000 15.95 22.6
F6 2 million 12.39 17.6

Eurolift 13,6 million 9.25 13.15

fies the receiver, the call is nevertheless non-blocking. The
sender node sends the message and can continue its work,
while the message gets processed by the network card.

Global communication allows asynchrounous, one-sided com-
munication primitives on the partitioned global address space.
Two operations exist to read and write from global mem-
ory independent of whether it is a local or remote location.
One important point is that each communication request is
queued and those operations are non-blocking, allowing the
program to continue its execution and hence a better use of
CPU cycles while the interconnect independently processes
the queues. There are several queues for requests which can
be used for example, for different kinds of communication
requests. If the application needs to make sure the data was
transfered (read or write), it needs to call a wait operation
on one queue that blocks until the transfer is finished and
asserting that the data is usable.

In addition to the communication routines, GPI provides
global atomic counters, i. e. integral types that can be ma-
nipulated through atomic functions. These atomic functions
are guaranteed to execute from start to end without fear of
preemption causing corruption. There are two basic opera-
tions on atomic counters: fetch and add and fetch, compare
and swap. The counters can be used as global shared vari-
ables used to synchronize nodes or events.

Finally, the internal module includes utility functionality
such as getting the rank of one node or the total number of
nodes started by the application. Besides those API prim-
ivites, it implements internal functions such as the start-up
of an application.

3.2 Programming and execution model
The GPI programming model implements a SPMD-like model
where the same program is started by the nodes of a clus-
ter system and where the application distinguishes nodes
through the concept of ranks.

The application is started by the GPI daemon. The GPI
daemon is a program that is running on all nodes of a cluster,
waiting for requests to start an application. The GPI dae-
mon interacts with the batch system to know which nodes
are assigned to the parallel job and starts the application on
those node. The GPI daemon also performs checks on the
status of the cluster nodes such as Infiniband connectivity.

To start a GPI application, the user must define the size
of the GPI global memory partition. If there are enough
resources available and the user has permissions for that, the
same size will be reserved (pinned) for the GPI application
on all nodes. The global memory is afterwards available to
the application through its lifetime and all threads on all
nodes have direct access to this space via communication

primitives.

The communication primitives act therefore directly on the
GPI global memory, without any memory allocation or mem-
ory pinning. The communication primitives accept a tuple
(offset, node) to steer the communication and control ex-
actly the data locality.

The application should place its data on the GPI global
memory space, making it globally available to all threads.
Having the data readly available, applications should focus
on algorithms that are more asynchronous and possibly leav-
ing behing the implicit synchronization imposed by a two-
sided communication model.

4. APPROACH AND IMPLEMENTATION
The parallelization of the flow solver is based on a domain
decomposition of the computational grid. In the work pre-
sented we have used the CHACO toolkit ([7]). The CHACO
toolkit manages to deliver well balanced partitions even for
a very large number of nodes. We have used the multi-level
Kernighan-Lin [5] methods of CHACO.

4.1 The asynchronous shared memory imple-
mentation

As briefly explained in the introduction TAU makes use of
a pool of colors (subdomains in a MPI domain). The im-
plemented asynchronous shared memory parallelization uses
the available pool of colors as a work pool. A thread pool
then loops over all colors until the entire MPI domain is
complete [4].

Unfortunately, this methodology is not as trivial as it seems.
About 50% of the solver loops run over the faces of the
dual mesh (the edges of the original mesh) and update the
attached mesh points. Updates to points attached to cross-
faces (faces where the attached mesh points belong to differ-
ent colors) then can lead to race conditions, if the attached
points are updated by more than a single thread at the same
time. We have solved this issue by introducing the concept
of mutual exclusion and mutual completion of colors. In
this concept a thread needs to mutually exclude all neigh-
bouring colors from being simultaneously processed. To that
end all threads loop over the entire set of colors and check
their status. If a color needs to be processed, the respec-
tive thread attempts to lock the color. If successful, the
thread checks the neighbouring color locks. If no neighbour-
ing color is locked, the thread computes the locked color and
subsequently releases the lock. The lock guarantess that no
neighbouring color can be processed during that time frame,
since all threads evaluate the locks of the respective neigh-
boring colors prior to processing [4].

While the concept of mutual exclusion guarantees a race-
condition free implementation, the concept of mutual com-

pletion provides the basis for an asynchronous operation.
We have resolved the Amdahl Trap of the OpenMP fork-join
model by complementing the above concept of mutual exclu-
sion with a concept of mutual completion. Wether or not a
color can be processed in this concept now not only depends
on the locks of the neighboring colors, but it also depends on
the local state as well as the state of the neighbouring colors.
The threads carry a thread local stage counter which is in-
cremented whenever all colors have been processed in one of
the color loops of the code. The colors in turn carry a stage
counter which is increased every time a color is processed.
All loops in TAU have been reimplemented as loops over
colors. This holds true not only for the face loops (which
run over the faces of a the dual mesh), but also for the point
loops. A color in a point loop which follows an face loop
hence can only be processed if the color itself still needs
to be processed and additionally all neighbouring colors to
this color have been updated in the previous face loop. In
this implementation there neither is a global synchronization
point nor an aggregation of load imbalances at the synchro-
nization point. Instead we always have local dependencies
on states and locks of neighbouring colors. We are confi-
dent that this concept will scale to a very high core number.
Wether it actually scales to e.g the 50 cores of the Intel MIC
architecture remains to be seen.

This data-flow model is somewhat similar to the data-flow
model of StarSs [10], however, in our case local data depen-
dencies (neighbouring colors) are bound to the data struc-
tures and set up during an initalization phase. In contrast
to StarSs a dedicated runtime environment is not required.
Also StarSs does not feature mutual exclusion and hence
would not be applicable here.

The threads in this implementation are started up once per
iteration - there is a single OpenMP directive in the code.

4.2 Overlap of communication and computa-
tion

The asynchronous shared memory implementation of TAU
has been extended with an overlap of communication and
computation. The first thread, which reaches the commu-
nication phase, locks all colors which are attached to the
MPI Halo (see Fig. 7), performes the halo exchange and
subsequently unlocks the colors attached to the MPI Halo.
All remaining threads compute (non-locked) non-halo col-
ors until the halo colors are unlocked again by the first
thread. Since the lock/relase mechanisms for the colors al-
ready were in place, the overlap of communication and com-
putation was a logical extension of the principle of mutual
exclusion of colors. In the benchmarks section we compare
the performance of the hybrid OpenMP/MPI implementa-
tion against the hybrid OpenMP/GPI implementation. We
emphasize that the only difference between these two im-
plementations is the communication pattern of the next-
neighbour halo-exchange. In the OpenMP/GPI Implemen-
tation the communication pattern is based on asynchronous
one-sided RDMA writes, whereas the OpenMP/MPI is im-
plemented as state-of-the-art MPI Irecv, MPI Isend over all
neighbours with a subsequent single MPI Waitall.

4.3 GPI implementation

In order to maintain the asynchronous methodology also on
a global (inter-node) level, the GPI implementation targets
the removal of the implizit synchronization due to the MPI
handshake in the 2-sided MPI communication. In the GPI
implementation of TAU all sends hence are 1-sided asyn-
chronous communication calls and the sender immediately
returns. Since the sender does not know anything about the
receiver state, we have implemented a stage counter for the
communication: In TAU all communication is performed in
SPMD fashion. All processes on all nodes run through the
same halo exchange routines in exactly the same sequence.
By providing rotating receiver and sender frames and in-
crementing stage stage counters for send and corresponding
receive we can guarantee a correct execution of the solver.
A negative side effect of this asynchronous methodology is,
that we can not write directly via RDMA into a remote re-
ceiver halo, since the sender does not know the state of the
remote receiver.

While assembling the message from the unstructured mesh,
we compute a checksum and write this checksum into the
header of our message (together with the stage counter,
sender id etc.). The receiver side evaluates the stage counter
and sender ID. If these match, the receiving thread assem-
bles the receive halo of the unstructured mesh and - while
doing this - computes the checksum. If computed checksum
and header checksum coincide and all outstanding receives
are complete, the receiver returns. We note that assembling
a complete receive halo at the earliest possible stage is of cru-
cial importance for the scalability of the solver. The reason
for this is, that for very small local mesh sizes, most colors
will have at least one point in the halo. Threads which com-
pute non-halo colors then quickly run out of work and are
stalled until the communication thread (or threads) unlocks
the halo colors.

For this reason we have separated the colors into send and
receive halo colors in the preprocessing step. In the GPI
implementation the last of the sender threads immediately
unlocks the send halo, as soon as the sender frames have
been assembled and sent. The sender threads then join the
thread pool, which in turn then can process colors from the
send halo in addition to non-halo colors.

Sends are usually mulithreaded, where the number of threads
can be dynamic (e.g. depending on the current level of the
multigrid). The receiving threads are assigned simultane-
ously and in principle also can be multithreaded. For the 6
cores/socket benchmarks however we have assigned 3 sender
threads from the thread pool and a single receiver thread.

4.4 Modifications in GPI
Even though more than 95% of the communication in TAU
is next-neighbour communication, the TAU solver requires a
collective reduction operation for monitoring and the global
residual (called once per iteration).

The collectives module of the GPI implements the global
barrier and the Allreduce collective operations as this is one
of the most frequently used collective operations. Although
GPI aims at more asynchronous implementations and is di-
verging from a bulk-synchronous processing, some global
synchronization points might be required and therefore the

 0

 500

 1000

 1500

 2000

 2500

 3000

2b 16b 64b 256b 1K 4K 16K 128K 1M 4M

B
a
n
d
w

id
th

 (
M

B
/s

e
c
s
)

Message size (bytes)

Bandwidth

GPI
IB tools

MPI Isend

Figure 2: Bandwidth

need of a scalable barrier implementation.

The same justifies the implementation of the AllReduce col-
lective operation, that supports typical reduce operations
such as minimum, maximum and sum of standard types.

The Allreduce collective operation has been developed in the
context of this work.

5. BENCHMARKS
The Allreduce micro benchmarks were produced with Mel-
lanox ConnectX IB DDR and a central fully non-blocking
fat-tree SUN Magnum switch. All other benchmarks were
performed with the Mellanox MT26428 Infiniband adapter
(ConnectX IB QDR, PCIe 2.0). The actual TAU applica-
tion benchmarks were produced on the C2A2S2E system in
Braunschweig [3], which has recently been upgraded to dual
socket 2.93Ghz, 6-core Intel Westmere blades. The nodes
feature the afore mentioned Mellanox MT26428 ConnectX
DDR adapter and the central infiniband switch is a QDR
switch from Voltaire with a blocking factor of two.

5.1 GPI micro benchmarks
In this section, we present some results on micro-benchmarks
obtained with GPI when compared with the Infiniband per-
formance tools and MPI.

The figure 2 presents the obtained bandwidth with GPI, the
Infiniband performance tools (IB tools) and the MPI ISend
operation.

The GPI performance follows the maximum obtained perfor-
mance from the low level Infiniband performance tools and is
very close to the maximum bandwidth already at 4KB mes-
sage sizes. The MPI ISend operation also reaches maximum
bandwidth but only at larger messages sizes. Although not
noticeable on Figure 2, for small message sizes (up to 512
bytes), GPI always reaches a better bandwidth with over a
factor of 2 when compared with the MPI ISend operation.
These results aim at showing that GPI exploits directly the
maximum performance (wire-speed) made available by the
interconnect (Infiniband).

Figure 3 depicts the time needed (in micro-seconds) by the

 0

 10

 20

 30

 40

 50

 60

 70

 8 16 32 64 128 256 512

T
im

e
 (

u
s
)

cores

Allreduce: 1 double

GPI MVAPICH 1.1

Figure 3: Allreduce operation on a double

Figure 4: F6 use case

Allreduce operation and its scalability as we increase the
number of nodes. The GPI operation is compared with the
MVAPICH 1.1 MPI implementation.

The performance of the GPI Allreduce operation scales very
well up to the maximum number of cores whereas the MPI
version starts decreasing its scalability after 64 cores. The
results demonstrate that the GPI operation yields a better
scaling behaviour with an increasing number of cores.

5.2 TAU benchmarks
All presented results have been produced in the same run
with an identical node set. In order to eliminate system
jitter, which can arise due to the blocking factor of two,
we have taken the minimum time for a single iteration out
of 1000 iterations. For a 4W multigrid-cycle and our set-
tings, this single iteration requires 140 next-neighbour halo
exchanges with 15-20 local neighbours and a single Allre-
duce, which in turn implies that the TAU solver features
close to perfect weak scalability.

The figures in 5 and 6 sum up the main results of this
work. The three different lines represent the original MPI
implementation, the OpenMP/MPI implementation, (run
on a per-socket basis) and the OpenMP/GPI version, also
run on a per-socket basis. We have also evaluated both
OpenMP/MPI and OpenMP/GPI with the node as a basis

Figure 5: F6, Single Grid, 2 million Points

for the shared memory implementaion. This version however
suffers severly from cc-numa issues and we have refrained
from using it. Since we expect future hardware develop-
ments to increase the number of cores per die rather than
the number of sockets per node, we currently consider this
a minor issue.

The depicted speedup is relativ to the MPI results for 10
nodes (120 cores). Until this point OpenMP/MPI as well
as OpenMP/GPI scale almost linearly. At 240 cores (i.e.
20 nodes), the Tau Code has a local mesh size of around
100,000 points. Since both the node-local mesh size as well
as the used solver type coincides with the M6 use case, we
estimate the performance at this point to be about 20 nodes
x 15.95 Gflop/sec = 319 Gflop/sec.

In order to test the strong scalability of our implementation,
we have chosen a very small benchmark mesh with just 2
million meshpoints. With close to linear weak scaling, the
strong scaling result implies that for a typical production
mesh with 40-50 million mesh points, TAU should scale to
around 28,800 x86 cores (or correspondingly to 37 double
precision Tflop/sec of sustained application performance).

From this point on the observed curves are the aggrega-
tion of four effects: The increase of the workload due to the
replication of send and receive halo, the node local load im-
balance, the global load imbalance, and last but not least
cache effects. We will briefly examine these four effects in a
bit more detail:

5.2.1 Increased workload

Figure 6: F6, 4W Multigrid, 2 million Points

Whenever we split a domain, we introduce additional faces
and points (see Fig. 7).

In our case, due to the employed multigrid this effect can
become quite dramatic: For 1440 cores we have 240 do-
mains (1 domain per 6-core westmere). This corresponds to
2 million points / 240 = 8333 points per domain, which still
seems reasonable. However - due to the agglomeration of the
multigrid there are only about 60 points in a coarse level do-
main - and an additonal 120 points in the receive halo of this
domain. The amount of work on the coarse multigrid levels
thus increases substantially with an increasing socket count.

5.2.2 Node local load imbalance

Figure 7: Splitting a domain: The introduced gray
points and the correspondingly attached faces im-
ply additional work for the solver. The gray points
correspond to the recv halo, whereas the points con-
nected to them correspond to the send halo.

While the asynchronous shared memory implementation is
able to handle load imbalance extremely well (compared to
e.g a loop parallelization with OpenMP), there are still some
limits: In the above case of 60 inner points per domain and
120 points in the receive halo, all inner points probably will
belong to the send halo. There is thus no possible overlap
of communication and computation. All threads are stalled
until the send frames have been assembled and again are
stalled until the receive halo has been build.

5.2.3 Cache effects
The TAU solver already runs at good scalar efficiency at 240
cores with a node-local mesh size of 100,000 points. However
- this mesh still does not fit into the cache entirely. There is
a pronounced superlinear speedup at 480 cores in the curve,
where large parts of the solver start to operate entirely in
L3 cache.

5.2.4 Global load imbalance
While the CHACO toolkit does an excellent job in providing
a load balanced mesh, small load imbalances are showing up
on the coarser levels of the multigrid. In the asynchronous
GPI implementation we can hide most of that imbalance:
If a specific process is slower in a computational part A
between two halo exchanges, it might be faster in a following
part B. An asynchronous implementation is able to hide this
load imbalance, provided the total runtime of A+B is equal
to the corresponding runtimes A+B at other processes. We
emphasize, that hiding this global load imbalance is only
possible with an implementation which both can overlap the
halo exchange between part A and B with computation and
which also provides an asynchronous halo exchange. The
hidden load imbalance shows up in the relative smoothness
of the speedup curve in the OpenMP/GPI results.

6. CONCLUSION AND FUTURE WORK
We have presented a highly efficient and highly scalable im-
plementation of a CFD solver on top of a PGAS API. The
combination of both asynchronous shared memory imple-
mentation and global asynchronous communication leads to
excellent scalability - even for a 4w Multigrid with 2 million
mesh points / 1440 cores = 1388 mesh points/core. We were
able to use key elements of the highly efficient scalar imple-
mentation (the colors) and reshape this concept towards an
equally efficient but also highly scalable shared memory im-
plementation.

We have extended the node-local asynchronous methodology
towards a global asynchronous operation and thus were able
to hide most of the global load imbalance arising from the
domain decomposition. The GPI implementation features
a dynamic assignment of the number of send and receive
threads. We believe that this will be of strong relevance
for future multi- or manycore architectures like the Intel
MIC, since it will dramatically reduce both polling over-
head for outstanding receives (on the fine mesh multigrid
level) as well as a multithreaded simultaneous 1-sided send
to all neighbours in the domain decomposition (on the coarse
multigrid levels).

6.1 Future work

In a Partitioned Global Address Space every thread can ac-
cess the entire global memory of the application at any given
point in time. We believe that this programming model not
only provides opportunities for better programmability, but
that it also has a great potential to deliver higher scalability
than is available in the scope of message passing. For the
future we envision a new standard for a PGAS-APl which
should enable application programmers to reshape and reim-
plement their bulk-synchronous communication patterns to-
wards an asynchronous model with a very high degree of
overlap of communication and computation.

7. ACKNOWLEDGMENTS
This work has been funded partly by the german Federal
Ministry of Education and Research within the national re-
search project HI-CFD.

8. REFERENCES
[1] T. Alrutz, C. Simmendinger, and T. Gerhold.

Efficiency enhancement of an unstructured CFD-Code
on distributed computing systems. In Parallel
Computational Fluid Dynamics 2009, 2009.

[2] C. Coarfa, Y. Dotsenko, J. Eckhardt, and
J. Mellor-Crummey. Co-array Fortran performance
and potential: An NPB experimental study.
Languages and Compilers for Parallel Computing,
pages 177–193, 2004.

[3] DLR Institute of Aerodynamics and Flow Technology.
Center of Computer Applications in Aerospace Science
and Engineering, 2007.

[4] J. Jägersküpper and C. Simmendinger. A Novel
Shared-Memory Thread-Pool Implementation for
Hybrid Parallel CFD Solvers. In Euro-Par 2011, to
appear, 2011.

[5] B. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. Bell System
Technical Journal, 49:291–307, 1970.

[6] N. Kroll, T. Gerhold, S. Melber, R. Heinrich,
T. Schwarz, and B. Schöning. Parallel Large Scale
Computations for Aerodynamic Aircraft Design with
the German CFD System MEGAFLOW. In
Proceedings of Parallel CFD 2001, 2001.

[7] R. Leland and B. Hendrickson. A Multilevel
Algorithm for Partitioning Graphs. Proc.
Supercomputing ’95., 1995.

[8] C. Lojewski and R. Machado. The Fraunhofer virtual
machine: a communication library and runtime
system based on the RDMA model. Computer Science
- Research and Development, 23(3-4):125–132, 2009.

[9] J. Paz. Evaluation of Parallel Domain Decomposition
Algorithms. In 1.st national computer science
encounter , workshop of distributed and parallel
systems. Citeseer, 1997.

[10] J. Planas, R. M. Badia, E. . Ayguadé, and J. Labarta.
Hierarchical task based programming with StarSs.
International Journal of High Performance Computing
Applications, 23:284 – 299, 2009.

[11] D. Schwamborn, T. Gerhold, and R. Heinrich. The
DLR TAU-code: Recent applications in research and
industry. In European conference on computational
fluid dynamics, ECCOMAS CFD, pages 1–25.
Citeseer, 2006.

[12] K. Yelick. Beyond UPC. Proceedings of the Third
Conference on Partitioned Global Address Spaces,
2009.

