
Evaluating Coarray Fortran with the CGPOP Miniapp

Andrew I. Stone
Colorado State University
stonea@cs.colostate.edu

John M. Dennis
National Center for Atmospheric

Research
dennis@ucar.edu

Michelle Mills Strout
Colorado State University
mstrout@cs.colostate.edu

Abstract
The Parallel Ocean Program (POP) is a 71,000 line-of-code pro-
gram written in Fortran and MPI. POP is a component of the Com-
munity Earth System Model (CESM), which is a heavily used
global climate model. Now that Coarrays are part of the Fortran
standard one question raised by POP’s developers is whether Coar-
rays could be used to improve POP’s performance or reduce its
code volume. Although Coarray Fortran (CAF) has been evaluated
with smaller benchmarks and with an older version of POP, it has
not been evaluated with newer versions of POP or on modern plat-
forms. In this paper, we examine what impacts using CAF has on a
large climate simulation application by comparing and evaluating
variants of the CGPOP miniapp, which serves as a performance
proxy of POP.

1. Introduction
Large scientific simulation applications commonly use MPI to in-
troduce parallelism and conduct communication. Although MPI is
a mature and popular interface, developers often find it difficult to
use. MPI requires programmers to handle a large number of im-
plementation details such as the explicit marshalling and unmar-
shalling of data into messages and the explicit specification of com-
munication schedules. MPI is commonly criticised as being low-
level and is sometimes referred to as the “the assembly language of
parallel programming” [13].

Parallel programming models such as the PGAS [12, 26, 32]
and DARPA HPCS [21] languages avoid explicit message pass-
ing and have been developed to make programming parallel appli-
cations easier. These languages have been shown to perform well
and improve programmer productivity within the context of bench-
marks and applications written from scratch [4, 19, 31]. However,
the productivity of PGAS languages within large, existing, simula-
tion codes has not been extensively researched.

The Parallel Ocean Program (POP) [20], developed at Los
Alamos National Laboratory, is a large simulation code that runs on
machines with thousands of cores. Much of POP’s complexity lies
in handling parallelization and communication details. As such,
it is worth considering whether a PGAS language could improve
POP’s performance or reduce its code volume (total lines of code).

Given that POP is written in Fortran, using Fortran’s Coarray
extensions is a logical step towards introducing a PGAS model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

However, due to POP’s size and complexity it is desirable to avoid
integrating Coarrays into the entire application until their benefit
has been shown in a smaller prototype application. In this paper we
use the CGPOP miniapp [28] as such a prototype. CGPOP models
POP’s Conjugate Gradient routine and contains about 3000 source
lines of code (SLOC) versus the 71,000 lines of POP.

During this investigation we developed several different variants
of the CGPOP miniapp with the following questions in mind:

• How does the performance of the CAF variant of CGPOP
compare with the original MPI variant extracted from POP?

• How will using an interconnect with direct PGAS support im-
pact performance?

• Does transferring data in CAF by pulling (via get operations)
differ in performance from pushing data (via put operations)?

• How easy is it to introduce a communication/computation over-
lap with the CAF version of CGPOP?

• What features are missing in the CAF standard and/or current
implementation that are necessary to implement an efficient
CAF version of POP or would otherwise be useful?

To answer these questions, we describe the CGPOP miniapp
in Section 2. We show that CGPOP accurately models the perfor-
mance of POP on two different Cray XT5 systems, a Cray XE6, and
a BlueGene/L system, and describe several variants of the miniapp
developed to compare CAF and MPI. In Section 3 we present how
these different variants compare in terms of performance and code
volume. In Section 4 we discuss our experience using CAF and
document issues we encountered while programming with it. In
Section 5 we discuss other work that compares MPI to PGAS lan-
guages, and in Section 6 we conclude this paper.

2. A Performance Proxy for POP
The Parallel Ocean Program (POP) has been actively developed for
over 18 years [20]. Due to its continued use, maintenance of the
application in terms of porting it to new architectures is an ongoing
issue. Further, POP can be resource intensive to execute. While
versions of POP at low-resolution exist, they do not exhibit the
same sensitivity to communication performance as the versions at a
0.1◦ resolution. On lower memory systems like BlueGene the 0.1◦

POP execution requires a minimum of approximately 800 cores
to execute. Even on systems with larger amount of memory per
core a minimum of 96 cores is needed for as long as 40 minutes
just to run a single simulated day. POP applications also includes a
complicated build system that may have to be modified for a new
compiler and support stack when moving to a new system. Clearly
a much smaller, less resource intensive piece of code that serves as
a proxy for the full application would enable a quicker turn around
in the development cycle. Another advantage of a smaller proxy is

Read intermediate state file
Construct communication metadata
Start Timer
CGPOP-solver()
Stop Timer
Check correctness
Output timing and verification info

TimingDomain
decomposition

generator

Intermediate
state file

Data:

Application Metadata:

Blocks

CGPOP miniappInput file

Stencil coefficients

Vector b

Initial guess for

Final solution for

Land mask

Blocked forms of

Data:

L2 Norm of
CG output

vector x

vector x

information

data from input
file

Neighbors graph
GDOF arrays

Figure 1. Architecture of the CGPOP Miniapp

System
Name Kraken Hopper Lynx Frost

Company Cray Cray Cray IBM
System Type XT5 XE6 XT5 BG/L

of cores 99,072 153,408 912 8192
Processor

CPU Opteron Opteron Opteron PPC440
Mhz 2600 2100 2200 700

Peak Gflops/core 10.4 8.4 8.8 2.8
cores/node 12 24 12 2

Memory Hierarchy
L1 data-cache 64 KB 64 KB 64 KB 32 KB

L2 cache 512 KB 512 KB 512 KB 2 KB
L3 cache 6 MB 12 MB 6 MB 4 MB

(shared) (shared) (shared) (shared)
Network

topology 3D torus 3D torus 2D torus 3D torus
of Links/per node 6 6 4 6

Bandwidth/link 9.6 GB/s 26.6 GB/s 9.6 GB/s 0.18 GB/s

Table 1. Description of compute platforms used for this study.

that developers could prototype changes in it without changing the
larger POP application.

We developed the CGPOP miniapp to serve as a proxy for POP.
We started development of CGPOP in June 2010 and released ver-
sion 1.0 of it in July 2011 [1, 28]. This section shows that CGPOP
miniapp matches the performance profile of POP, defines what re-
quirements variants of CGPOP miniapp fulfill, and describes the
variants of CGPOP that we use to compare CAF and MPI.

2.1 CGPOP as a performance proxy
To be considered a performance proxy, a miniapp should accurately
model the performance bottleneck of the full application at the
range of cores that the full application targets. Since the POP
application typically runs on thousands to tens of thousands of
processors we compare the scalability of CGPOP and POP along
this range.

Scalability can be affected by a number of factors including
the machine and compiler used. To ensure that the performance
behavior of the CGPOP miniapp matches that of POP we examine
scalability across several different platforms: Hopper, a Cray XE6
located at the National Energy Research Supercomputing Center
(NERSC); Frost, a BlueGene/L located at the National Center for
Atmospheric Research (NCAR); Lynx [2], a Cray XT5 also located

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

of cores

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

POP solver w/PGI [Hopper]

CGpop w/Cray [Hopper]

CGpop w/PGI [Hopper]

POP solver w/XLF [Frost]

CGpop w/XLF [Frost]

POP solver w/PGI [Kraken]

CGpop w/PGI [Kraken]

Figure 2. Execution time in seconds for 1 day of the barotropic
component of the POP 0.1◦ benchmark and the 2-sided MPI ver-
sion of the CGPOP miniapp on three different compute platforms

at NCAR; and Kraken, a Cray XT5 located at the National Institute
for Computational Science (NICS). We list technical information
about these compute platforms in Table 1. The compilers we used in
our examination were PGI Fortran, Cray Fortran, and XL Fortran.
We present our results in Figure 2, and as can be seen by comparing
the similarly colored lines for POP and CGPOP, the scalability
behavior of the two are comparable when the same compiler and
machine are used.

2.2 CGPOP miniapp specification
The CGPOP miniapp is defined in terms of its input/output behav-
ior and the algorithm it conducts. We illustrate this behavior in Fig-
ure 1 and list pseudocode for the CG algorithm in Figure 6.

As shown in Figure 1, the CGPOP miniapp executable is passed
an intermediate state file, which is generated by the cginit domain
decomposition generator. The cginit domain decomposition gen-
erator is passed an input file that contains stencil coefficients that
are used with the discretization to construct the sparse matrix, a
mask to indicate if a grid point is ocean or land, and the initial guess

1-dimensional data-structure

Two-sided MPI CAF/MPI Hybrid

Barrier Overlapped Barrier Overlapped

Buffered

Pull Push

Buffered

Pull Push

Unbuffered pull Unbuffered pull

2-dimensional data-structure

Two-sided MPI CAF/MPI Hybrid

Pull Push

Figure 3. Variants of the CGPOP MiniApp. The leaf nodes represent a variant; the ancestors of each leaf define what properties it has.

(1,1) (nx_block,1)

(1,ny_block)

nghost

nghost{

{

Figure 4. A processor owns a two-dimensional array of points
for a block. This array also includes halo cells (shaded), that may
have ownership with a different processor. The CGPOP miniapp
periodically executes a boundary exchange step to transmit data in
order to update halo cells.

and final solution for vectors x and b of Figure 6. The domain de-
composition generator breaks an 3600 × 2400 array of ocean data
into subdomain blocks that are distributed to each processor.

In addition to the data component of the intermediate state file,
there is metadata that describe the relationship between blocks.
There is a set of block information records, a graph of neighbors,
and integer arrays that correspond to the global degree of freedom
(GDOF) for every point in each block. GDOF values are identifiers
that are unique for each grid point in the global domain. The block
information records identify the location of each rectangular block
within the global domain in terms of two-dimensional indices in
the global domain.

After being generated, the intermediate state file can be passed
to the CGPOP executable. After executing, CGPOP outputs cor-
rectness and timing data. Timing information is needed for eval-
uating performance. The correctness test, which is used for code
verification, checks that the L2 norm for x calculated by CGPOP
matches that calculated by POP.

The algorithm CGPOP implements (see Figure 6) is a version of
conjugate gradient that uses a single inner product [8], to iteratively
solve for vector x in the equation Ax = b. The matrix A, along with
the initial guess vector x0, right hand side vector b, and diagonal

Sender-side
data

Send buffer

Receive buffer

Receiver-side
data

Process A Process B

Process C Process D

Figure 5. Communication pattern when one-dimensional data
structure is used to store blocks. Points to the right of the dashed
line lie in the halo region, which stores data from neighboring
blocks’ edges.

preconditioner vector M−1 are read from an intermediate state file
and passed as inputs into the function CGPOP-solver. The final sur-
face pressure vector x is the output of CGPOP-solver. The CGPOP-
solver algorithm consists of a number of linear algebra computa-
tions interspersed with two communication steps. The GlobalSum
function performs a 3-word vector reduction, while UpdateHalo
function performs a boundary exchange between neighboring sub-
domains. The UpdateHalo function is passed an array that has
been distributed across processes using the distribution described
in the blocks data-structure of the intermediate state file. The as-
terisk ∗ indicates a dot product between two vectors involving all
entries in the local subdomain, and the GlobalSum results in the
full dot product being completed.

2.3 Variants of CGPOP
We constructed several variants of the CGPOP miniapp to compare
how Coarray Fortran and MPI can be used to implement communi-

x = function CGPOP-solver(A,x0,b,M−1)
! *** Compute initial residual ***
s = Axo, r = b− s

rr0 = (GlobalSum(r ∗ r))1/2

UpdateHalo(r)

! *** Single pass of regular CG algorithm ***
z = M−1r, s = z, q = As

UpdateHalo(q)

{ρ, σ} = GlobalSum({r ∗ z, s ∗ q})

! *** Calculate coefficient ***
α = ρ/σ

! *** Compute next solution and residual ***
x = x+ αs, r = r − αq

do 124 iterations:
! *** Apply preconditioner ***
z = M−1r, az = Az

UpdateHalo(az)

{ρ′, δ, γ} = GlobalSum({r ∗ z, r ∗ r, az ∗ z})

! *** Calculate updated coefficients ***
β = ρ′/ρ, σ = δ − β2σ, α = ρ/σ, ρ = ρ′

! *** Compute next solution and residual ***
x = x+ α(z + βs)
r = r − α(az + βq)
s = z + βs
q = az + βs

Figure 6. CGPOP’s preconditioned conjugate gradient algorithm.

cation (the UpdateHalo() call in Figure 6). In Section 3 we com-
pare these variants in terms of performance and code volume. In
this section we describe how these variants differ from one another.
Figure 3 illustrates the variants as leaves within a decision tree. A
leaf’s ancestors represent properties each variant has.

Each variant either uses MPI or a hybrid of MPI and CAF
as its programming model. In the MPI implementations we use
MPI Isend and MPI Irecv calls to conduct two-sided point-to-
point communication. In the CAF implementations we conduct
point-to-point communication by assigning values (i.e., pushing) or
reading values (i.e., pulling) to or from Coarrays. In both the MPI
and Coarray implementations we used MPI Reduce to conduct col-
lective communication. We found it necessary to use MPI for this
operation because reduction operations are not currently supported
in the CAF standard, and Cray’s Coarray reduction extensions only
work with XE machines.

One difference between the variants is whether they use a one-
dimensional (1D) or two-dimensional (2D) array within the con-
jugate gradient solver. We examine both possibilities since the
POP application provides the option to use either. When subblocks
are stored using a one-dimensional array only data corresponding
to ocean points is stored. When subblocks are stored in a two-
dimensional array storage is allocated for points that correspond
to land even though these points are not updated.

The data-structure used affects the way communication occurs.
In all variants there is a halo region in the local data array that
contains copies of data from neighboring subdomain blocks. This
data is needed in order to update the local subdomain blocks dur-
ing an iteration of the conjugate-gradient algorithm. In Figure 4
we illustrate the format of the array used in the two-dimensional
variants. The operations to update this halo region are contained in

the UpdateHalo function called by the conjugate gradient routine
documented in Figure 6.

In the 2D MPI variant each process sends data to its four neigh-
bors (north, south, west, and east) by packaging the adjacent data
and sending it out. This packaging process is not needed in the 2D
CAF variants since the region of the array that needs to be send out
or updated can be addressed directly using ranges with Fortran’s
colon operator (for example, the rightmost column of elements in
an n by n matrix can be expressed as A(n-1, 1:n)).

Buffering also occurs in the 1D MPI variant and some of the
1D CAF variants. Data is aggregated into a buffer so that a single
message is sent between a processor and its neighbor. This aggre-
gation is necessary due to the fact that the local data that a neighbor
needs may not be stored contiguously in memory. We illustrate the
buffering process when using the one-dimensional data structure in
Figure 2.3. One of the 1D CAF variants does not use buffering and
instead the communication occurs through Coarray reads and/or
writes. This is more convenient since the buffering step does not
have to be programmed, but it does require multiple messages if
the CAF implementation is not able to coalesce communication.

One issues that occurs when using a one-sided communication
model, like that in CAF, is that is necessary to decide whether
data is pushed so that each processor issues communication calls to
putting data to its neighbors, or pulled so that each processor issues
get calls to retrieve data from its neighbors. In two-sided communi-
cation models both types of communication calls are specified. In
order to examine the performance impact of pushing versus pulling
data we include variants that push and variants that pull.

A final optimization we examine in the one-dimensional vari-
ants is communication/computation overlap. For the one-dimensional
variants that use two-sided MPI implementation and CAF, we in-
clude versions that include a barrier synchronization step after per-
forming an UpdateHalo and GlobalSum, and versions that overlap
communication and computation by only synchronizing between
neighboring processes when needed. In Figure 13 we illustrate the
tasks that occur for two iterations of the CG algorithm and mark
where synchronization is needed. Notice that updating interior data
can occur while the boundary exchange is conducted.

In Figures 8, 9, and 11 we show code from the UpdateHalo
subroutine in different variants of the miniapp. The most succinct
code is in Figure 8, which pulls new values for each ghost cell to
update it. Synchornization is necessary on line 17 to ensure that
one thread does not modify values in its array while another thread
is pulling values from it. Synchroniztaion is necessary on line 7 to
ensure that when a thread pulls values from another those values
are recent. In Figure 9 we show code that buffers values prior to
sending them (as illustrated in Figure 2.3). In Figure 11 we show
code that transfers data in the 2D variant of the miniapp.

3. CAF Experimentation
In this section we examine how the variants of the CGPOP miniapp
discussed in Section 2.3 compare in terms of performance and code
volume.

3.1 Performance Comparison
Performance is crucial when developing scientific simulation ap-
plications such as POP. Thus, in order for an integration of CAF
into POP to be practical, performance with CAF must be compa-
rable to, if not better than, performance with MPI. Performance is,
of course, dependent on the platform used, and PGAS implemen-
tations typically perform better when executed on platforms that
include an interconnect with hardware support for PGAS.

In this section, we evaluate the performance of our miniapp im-
plementations on Lynx, a Cray XT5m, and Hopper a Cray XE6.
Table 1 provides the specifics of these compute platforms. We com-

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

of cores

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
)

MPI (Hopper)

CAF unbuff pull (Hopper)

CAF buff pull (Hopper)

CAF buff push (Hopper)

MPI (Lynx)

CAF unbuff pull (Lynx)

CAF buff pull (Lynx)

CAF buff push (Lynx)

(a) Execution time of one-dimensional buffered
and unbuffered variants (on Lynx and Hopper)

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

of cores

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
)

MPI

CAF buff push

CAF overlap buff push

CAF overlap w/ dir buff push

(b) Execution time of one-dimensional variant
with a computation/communication overlap (on Hopper)

Figure 7. Execution time for several of the one-dimensional implementations of CGpop on Lynx: a Cray XT5m and Hopper: a Cray XE6.

0

100

200

300

400

500

Unbuffered
pull

Buffered
push

Buffered
pull

CAF with
overlap

MPI with
overlap Push Pull

1D 2D

Deleted
Modified
Added

(a) Classified delta SLOC from MPI implementation. −500

−400

−300

−200

−100

0

100

Unbuffered
pull

Buffered
push

Buffered
pull

CAF with
overlap

MPI with
overlap Push Pull

1D 2D

(b) SLOC difference between CGPOP version 1.0
variants in relation to corresponding MPI variant.

Figure 12. Code volume difference of several different implementations of CGPOP.

piled these implementations using version 7.3.3 of the Cray Fortran
compiler. Note that Hopper uses a Gemini interconnect, which pro-
vides hardware support for PGAS languages, while the XT5m uses
an older SeaStar 2 interconnect, which does not. We illustrate the
performance of several of the one-dimensional CGPOP variants in
Figure 7. For all of our performance measurements we ran CGPOP
so that the conjugate gradient operation was executed 226 times
and was applied to a 3600 × 2400 grid of ocean data, therefore
Figure 7 present strong scaling results.

The benefit of having hardware support for PGAS can be seen
by comparing the execution times on Lynx (dotted lines) and on

Hopper (solid lines) shown in Figure 7a. For the one-dimensional
MPI version, CGPOP on 768 cores of Hopper is 1.4 times faster
than on Lynx. For the CAF unbuffered pull version CGPOP is 14.4
times faster on Hopper versus Lynx. The performance improvement
for the CAF unbuffered pull suggests that hardware support has a
profound impact on obtainable CAF performance.

On Lynx we observe minor differences in performance between
the buffered push, buffered pull, and MPI versions. However, due
to not aggregating network traffic, the unbuffered version performs
significantly worse than any of the three buffered implementations.

1 s u b r o u t i n e UpdateHalo (a r r a y)
2 ! ∗∗ I n p u t p a r a m e t e r s and l o c a l v a r i a b l e s : ∗∗
3 rea l , i n t e n t (i n o u t) : : a r r a y (:) [:]
4
5 i n t e g e r : : i ! dummy c o u n t e r
6
7 sync a l l
8
9 ! ∗∗∗

10 ! i t e r a t e t h r o u g h ha lo e l e m e n t s , g ra b b i n g f r e s h
11 ! v a l u e s from remote images .
12 ! ∗∗∗
13 do i = s t a r t O f H a l o I d x , endOfHaloIdx
14 a r r a y (i) = a r r a y (h a l o 2 g r a b (i)) [ha loOnProc (i)]
15 enddo
16
17 sync a l l
18 end s u b r o u t i n e UpdateHalo

Figure 8. UpdateHalo subroutine that pulls individual values of
data from neighbors.

1 s u b r o u t i n e UpdateHalo (a r r a y)
2 ! ∗∗ I n p u t p a r a m e t e r s and l o c a l v a r i a b l e s : ∗∗
3 r e a l (r8) , i n t e n t (i n o u t) : : a r r a y (:)
4
5 i n t e g e r (i 4) : : s r c , d e s t , len , i p t r , t a g
6 i n t e g e r (i 4) : : i e r r , i , p l a c e v a l , j
7
8 ! ∗∗ Gather da ta t o be s e n t i n t o a b u f f e r ∗∗
9 do i =1 , l e n S e n d B u f f e r

10 s e n d B u f f e r (i) = a r r a y (h a l o 2 s e n d (i))
11 enddo
12
13 ! ∗∗ Push da ta from b u f f e r t o n e i g h b o r s ∗∗
14 do i =1 , nSend
15 i p t r = p t r S e n d (i)
16 l e n = SendCnt (i)
17 d e s t = sNeigh (i) + 1
18 p l a c e v a l = p l a c e (i)
19
20 r e c v B u f f e r (p l a c e v a l : p l a c e v a l + len −1)[d e s t] = &
21 s e n d B u f f e r (i p t r : i p t r + len−1)
22 enddo
23
24 sync a l l
25
26 ! ∗∗∗
27 ! I n d i r e c t a d d r e s s from t h e r e c v B u f f e r t o t h e
28 ! r e c e i v i n g s i d e ’ s a r r a y
29 ! ∗∗∗
30 do i =1 , l e n R e c v B u f f e r
31 a r r a y (r e c v 2 h a l o (i)) = r e c v B u f f e r (i)
32 enddo
33
34 sync a l l
35 end s u b r o u t i n e UpdateHalo

Figure 9. UpdateHalo subroutine that buffers data prior to pushing
it.

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

of cores

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

MPI [1D]

MPI [2D]

CAF buff push [2D]

CAF buff pull [2D]

Figure 10. Performance of two dimensional variants of miniapp
on Hopper.

The unbuffered version has 44 times slower execution time than the
fastest MPI implementation on 768 cores.

On Hopper just as on Lynx, the performance of the buffered
CAF versions takes no longer than 120% of the execution time of
the MPI version when executed on fewer than 1000 cores. For core
counts greater than 1000 the execution times of the buffered CAF
versions takes no longer than 187% of the time of the MPI version.

As mentioned earlier, the performance penalty for using un-
buffered CAF is much less severe on Hopper versus Lynx. On 768
cores of Hopper the execution time of the unbuffered version is
2.3 times larger than the MPI version. The performance penalty
for use of the unbuffered CAF version grows at larger core counts.
At 28,992 cores the execution time of the unbuffered version takes
16 times as long as the MPI version. Note that on 28,992 cores,
the cost of the CGPOP miniapp is dominated by the cost of the 3-
word GlobalSum, which consumes nearly 80% of the total time.
Fine-grained synchronization, like that needed for the GlobalSum
operation amplify the OS jitter problem [14]. Thus, an efficient and
easy to use CAF reduction operator would significantly benefit the
scalability of the CAF version of CGPOP.

In Figure 7b we compare the execution time of a variant of
the miniapp that includes a computation/communication overlap.
This overlap does not make a significant impact on total execution
time when compared against the buffered push variant. One of the
overlapping variants we test uses a preprocessor directive to instruct
the CAF compiler to not automatically insert synchronization. This
directive is necessary in order to ensure an overlap. We discuss this
issue in more detail in section 4.4.

3.2 Code Volume Comparison
To evaluate the effect CAF has on code volume we use a delta-
SLOC metric. This metric indicates how lines of code change from
a corresponding MPI implementation of CGPOP.

The delta-SLOC metric consists of three components: how
many lines have been modified from the MPI version, how many
lines have been added, and how many lines have been deleted.
Modified lines include some shared text between the base and com-
pared implementation, added lines are not included in the base im-
plementation but are in the compared implementation, and deleted

1 ! ∗∗∗
2 ! I t e r a t e t h r o u g h l o c a l b l o c k s t o send
3 ! boundary da ta t o n e i g h b o r s
4 ! ∗∗∗
5 do i =1 , n L o c a l B l o c k s
6 ! ∗∗∗
7 ! Get i n f o r m a t i o n abou t t h i s l o c a l b l o c k
8 ! ∗∗∗
9 g lbBl k = l o c a l b l o c k s (i)

10 c a l l g e t b l o c k p a r a m e t e r (&
11 glbBlk , i b = ib , i e = ie , j b = jb , j e = j e)
12
13 ! ∗∗∗
14 ! I f t h e r e i s a n e i g h b o r i n g b l o c k t o t h e wes t
15 ! send t h a t n e i g h b o r da ta
16 ! ∗∗∗
17 i f (Neigh (west , g lb B lk) == 0) then
18 proc = mDist%proc (Neigh (i w e s t , g lbB lk))
19 block = mDist%l o c a l B l k I D (Neigh (i w e s t , g lbB lk))
20
21 a r r a y (i e +1 : i e + nghos t , j b : j e , block) [p roc] = &
22 a r r a y (i b : i b + nghos t −1, j b : j e , i)
23 end i f
24
25 . . .
26
27 end do

Figure 11. Code from UpdateHalo subroutine that pushes data in
2D CAF variant of miniapp.

lines exist in the base implementation but are nonexistent in the
compared implementation.

We calculate the delta-SLOC metric by using the Unix diff
utility, which reports on added, changed, and deleted lines of text.
We filter source files to exclude whitespace and comments and pass
diff the -d flag to find a minimal set of changes. When the diff
utility reports that n lines in the MPI implementation have been
changed into m lines in the compared implementation and n > m
we consider this as m modified lines and n−m deleted lines. When
n < m we consider this as n modified lines and m−n added lines.

In Figure 12a we present the delta-SLOC measurements of the
CGPOP and POP implementations. We stack the bars for lines-of-
code that are required The sum of these values is equal to the num-
ber of lines that differ between each implementation and the base
MPI version. For each version we also include a bar for the num-
ber of lines that were removed from the base MPI version. In Fig-
ure 12b we present this difference subtracted from the number of
deleted lines, which illustrates how the code-volume has changed
from the MPI implementation. In general, a low sum of modified
and added lines indicates that less work would be required to refac-
tor the source application than a high sum.Compared to the buffered
implementations, unbuffered versions require fewer lines of code
to implement and remove more lines of code from the base imple-
mentation. The delta-SLOC metrics are nearly identical between
the buffered pull and push versions.

The two-dimensional variants of the miniapp saw the largest
reduction in code volume due to the fact that explicit buffering was
not necessary in the CAF implementations. The one-dimensional
unbuffered pull variant also saw a large reduction in code volume,
however, the buffered variants did not see the same impact.

Ideally, we could create a variant of the miniapp that had the
reduced code volume benefits of an unbuffered version with the
performance of the buffered version. This may be possible through
future compiler optimization work. For example, because the com-
munication pattern remains constant throughout the lifetime of the
application and the UpdateHalo function is performed once per it-

Figure 13. Tasks and dependencies for two update steps. The
dashed line separates tasks for the first update step from tasks for
the second. Arrows represent a dependency (before a task can ex-
ecute all tasks that it is dependent on must be completed). Arrows
with open heads indicate that the dependence is between the two
tasks exists across images (specifically the images for all neighbor-
ing blocks). Note that the step to upate interior data can be per-
formed in parallel with the boundary exchange.

eration of the solver, a potential optimization could be to inspect
the coarray data access pattern at runtime during the first call to
UpdateHalo and to determine how communication could be aggre-
gated to automatically buffer communication on subsequent calls to
UpdateHalo.

4. Discussion of Experience Using CAF
This section discusses our experience and issues we encountered
while creating CAF variants of CGPOP. Unfortunately, unlike the
experience of others [27] where a significant improvement in ap-
plication performance was achieved when utilizing CAF, we were
unable to achieve any performance advantage from CAF versus the
original MPI implementation. Use of CAF results in a modest to
significant performance penalty. In CGPOP the necessary commu-
nication algorithm is well suited to the existing 2-sided MPI se-
mantic, unlike for [27] in which CAF enabled the use of a new and
more efficient communication algorithm.

4.1 Pushing versus pulling
One large difference between programming with MPI and a PGAS
language is that PGAS languages necessarily use one-sided com-
munication. In two-sided communication the sender explicitly in-
vokes a send operation to send data and the receiver explicitly in-

vokes a receive operation to receive data. On the other hand, in
one-sided communication a process may explicitly invoke a get
operation to retrieve data from the local memory of another pro-
cess without having the other process explicitly specify that the
communication should occur. The one-sided put operation enables
a process to place data into the local memory of another process
without the need for the other to specify that such an operation
should occur.

We found implementing the communication of the halo in CG-
POP with a pull (i.e., get) or with a push (i.e., put) equal in terms
of their impact on code volume (see Figure 12). We expect that push
variants of CGPOP will perform faster than pull variants because
pulling requires that the communication runtime use two messages
to conduct data transfer. One of these messages is to inform the
target process that a get operation is invoked, and the other mes-
sage sends the requested data. Despite the necessity of this extra
message we found the performance improvement of pushing over
pulling is minimal (see Figure 7).

4.2 Need for data aggregation
During the boundary exchange routine for the 1D versions of the
miniapp data the halo may not be contiguously stored in memory.
In the unbuffered variant of the code (see Figure 8) we conduct this
transfer by scanning through the local border points and invoking
individual get operations for each point. However, this approach
introduces a huge performance penalty due to the fact that each
individual get operation generates a unique message and thus
introduces a large amount of per-message overhead.

To get around this we first gather data into a buffer so that all
data that is to be pushed out to a neighbor or pulled from a neigh-
bor is contiguous. This alleviates the performance issues, but intro-
duces the need for explicit marshalling. Ideally, there could be some
mechanism to decouple an individual put or get command from an
individual message. In [6] Chen et al. use an automatic communi-
cation coalescing optimization in order to improve performance.

One feature that would improve would be for CAF to include a
statement to send non-contiguous data and automatically aggregate
it for communication. For example, with compiler support, lines 15
through 32 in Figure 9 could be replaced by the single expression:

array(recv2halo(:)[dest(i)])[dest(i)] = &
array(halo2send(:))

4.3 Distribution of communication metadata
One interesting difficulty we encountered while writing the CAF
version of the communication routine is that we had to modify the
distribution of metadata. This issue arises due to the different in-
formation necessary to conduct a data-transfer for one-sided ver-
sus two-sided communication. CAF is a one-sided communication
model, which means that only one side is required to specify that
communication should occur: either to get or put some piece of data
on another image.

Regardless of whether put or get operations are used to com-
municate, the side specifying the communication requires the im-
age number of the other side, as well as the address of where
data should be pulled from or the address of where data should
be placed. With two-sided communication only the sending side
needs to be aware of the address to pull data from and only the
receiving side needs to be aware of the address to place data. In
the MPI scheduling object for the MPI implementation, metadata
specifying what communication occurs was distributed to work for
two-sided communication (information about where to place data
was stored on the receiving side). Thus it was necessary to modify
the distribution of this metadata so that either push or pull one-sided
communication could occur.

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

of cores

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
)

MPI_barrier (hopper)

sync_all (hopper)

MPI_barrier (cray2)

sync_all (cray2)

Figure 14. Time required to perform 1000 successive
MPI Barrier operations or CAF sync all statements on a
Cray XT6m (Cray2 at Colorado State University) and Hopper.

4.4 Synchronization Management
In order to enable a communication/computation overlap in CAF
with version 7.3.3 of the Cray compiler we found it necessary
to use the defer sync compiler directive. Without this directive
the Cray compiler conservatively forces synchronization in order
to ensure program semantics. In the case of our communication
overlap code the compiler would insert a synchronization before
the start communication routine returned, effectively eliminating
the ability to overlap. We were able to determine that this was the
case by examining the assembly output provided by the compiler.

4.5 Missing Reductions on Some Machines
Although we used Coarray Fortran for the point-to-point commu-
nication done in the boundary exchange routine, we found it nec-
essary to use MPI for collective communication done elsewhere
in the program. Broadcast calls are used to propagate global pa-
rameters, and a sum-reduction operation is used in the conjugate-
gradient algorithm itself. Although the Fortran standard does not
include broadcast or reduction operations for Coarrays, as of ver-
sion 7.3.3 Cray’s compiler does: namely, through its CO SUM and
CO BCAST routines. Unfortunately, these routines are currently
only supported on Cray XE machines.

4.6 Synchronization Overhead
One impact on the performance for Coarray version was the over-
head necessary to synchronize computation and data. In Figure 13
we illustrate the tasks needed to complete two update steps and the
dependencies that exist between the tasks. The dependences drawn
using arrows with hollow heads represent a dependence that exist
across images (aka processes) and thus require a synchronization
step using either a ’sync all’ or ’sync images’ statement. Since these
cross images dependences exist between a block and all of neigh-
bors it is possible to pass the sync images statement and pass it
a team of processes that includes the process itself and its neigh-
bors. Doing so improves performance over using sync all. In the
overlapped variants of the miniapp we use sync images with such a
team.

One interesting issue we have discovered is that on a Cray
XT6m the sync all statements are more costly than MPI Barrier.

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

of cores

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

POP solver w/PGI [Kraken]

CGpop w/PGI [Kraken]

NPB−CG class D w/PGI [Kraken]

NPB−CG class C w/PGI [Kraken]

Figure 15. Performance profile of POP and the NAS parallel
benchmarks.

In Figure 14 we illustrate the time needed to perform 1000 consec-
utive synchronization operations using either MPI’s barrier com-
mand or CAF’s sync all statement on Lynx and Hopper. On Hopper
sync all performs similarly to MPI Barrier while on the XT6m
sync all performs much more poorly.

5. Related Work
In this paper we examine how Coarray Fortran compares to MPI
by comparing implementations of the CGPOP miniapp against
each other. How well parallel programming models improve perfor-
mance and programmer productivity is typically evaluated within
the context of smaller kernels. Some examples include sparse-
matrix vector multiply [18], Smith-Waterman [11], and dense ma-
trix computations and FFT [25]. Although such kernels play an im-
portant role in evaluating programming models and computer plat-
forms, their scope is limited and they do not necessarily have the
same performance profiles as larger applications. Heroux et al. in-
troduced the process of defining a miniapp as a research tool that
can encapsulate the characteristics of a full application [17], which
is the approach we use in this paper.

In some contexts the NAS Parallel Benchmarks [3] may be con-
sidered miniapps, and they are commonly used to evaluate pro-
gramming models. In [7] Datta et al. use NPB to evaluate Titanium;
and in [4] Cantonnet et al. compare UPC [12] to MPI using the
NPB CG benchmark. In [23] Malln et al. compare the performance
of MPI versus OpenMP versus UPC implementations of NPB on
multicore systems. Although NAS includes a conjugate-gradient
benchmark, this benchmark does not fulfill the requirement of be-
ing a performance proxy of POP. We illustrate the performance of
POP and NPB in Figure 15. The scaling properties of CG signifi-
cantly depend on the underlying mesh, or graph that represents the
sparse matrix nonzero structure [15, 16] and NPB, unlike POP, uses
a random pattern of nonzeros in the sparse matrix.

Cantonnet et al. [4] compared UPC [12] to MPI in terms of
programmability within the context of the NPB CG benchmark. In
addition to SLOC, they use conceptual complexity metrics such as
the number of keywords, function calls, and parameters to measure
programmability. Such complexity metrics are complimentary to
the ones we use in our comparison and could be added to a miniapp-
based programming model evaluation.

Another set of benchmarks is the DARPA HPC Challenge
(HPCC) Suite. [22]. From 2005 to 2010 the HPCC suite has been
used in the HPC Challenge Competition, where participants enter
implementations of the benchmarks in various languages to com-
pete for the ”most productive” implementation. In previous years,
entires written in PGAS and HPCS languages such Chapel [5],
CAF 2.0 [24], UPC, and X10 [10] have been involved in this com-
petition.

There has also been some work where full applications have
been completely rewritten in a new parallel programming model
to enable a performance and programmability evaluation [29, 31].
In [31] Yelick et al. also mention the importance of optimizing for
fine grained access.

In [30] Coarrays are integrated into an older version of POP
and tested on the Cray X1. The advantage of the CAF implemen-
tation in [30] were partially a result of reducing communication
volume. The reduction in communication volume was an algorithm
improvement and not a function of program languages. A similar
reduction in communication volume was implemented in the MPI
version of POP [9] used in this study.

6. Conclusions
In this paper we evaluate Coarray Fortran using the CGPOP
miniapp. Currently, we were unable to see a performance benefit
from using CAF over MPI on this code. Code volume was im-
proved in the two-dimensional data structure variants of miniapp
when using CAF because in array assignment expressions borders
can be expressed using Fortran’s array slicing features. However,
in the one-dimensional data structure version a buffering step was
needed for performance, which negatively impacted code volume.

As CAF matures we expect that the performance of CGPOP will
improve. CAF could benefit from automatic communication coa-
lescing and more efficient synchronization mechanisms. Addition-
ally, we believe CAF could also be improved by adding language
features that aid with scatter/gather operations across cores. Also,
Cray’s implementation of Fortran could be improved by enabling
Coarray reductions to work on additional systems.

Acknowledgements
We thank the reviewers for their helpful comments and suggestions
including the idea to include an scatter operator in CAF. This work
was supported by Department of Energy Early Career Award #DE-
SC3956. This work was financially supported through National
Science Foundation Cooperative Grant NSF01 which funds the
National Center for Atmospheric Research (NCAR), and through
the grant: #OCI-0749206.

References
[1] CGPOP miniapp website.

http://www.cs.colostate.edu/hpc/cgpop/.

[2] Lynx user guide.
http://www2.cisl.ucar.edu/docs/lynx-user-guide.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel bench-
marks. Technical report, The International Journal of Supercomputer
Applications, 1991.

[4] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi. Productivity
analysis of the UPC language. Proceedings of the International Par-
allel and Distributed Processing Symposium (IPDPS), 15:254a, 2004.

[5] B. L. Chamberlain, S. J. Deitz, S. A. Figueroa, D. M. Iten, and
A. Stone. Global HPC challenge benchmarks in Chapel. November
2008.

[6] W.-Y. Chen, C. Iancu, and K. Yelick. Communication optimiza-
tions for fine-grained upc applications. In Proceedings of the 14th
International Conference on Parallel Architectures and Compilation
Techniques, PACT ’05, pages 267–278, Washington, DC, USA, 2005.
IEEE Computer Society.

[7] K. Datta, D. Bonachea, and K. Yelick. Titanium performance and
potential: An npb experimental study. In E. Ayguad, G. Baumgartner,
J. Ramanujam, and P. Sadayappan, editors, Languages and Compilers
for Parallel Computing, volume 4339 of Lecture Notes in Computer
Science, pages 200–214. Springer Berlin / Heidelberg, 2006.

[8] E. F. D’Azevedo, V. L. Eijkhout, and C. H. Romine. Conjugate gradi-
ent algorithms with reduced synchronization overhead on distributed
memory multiprocessors. Technical Report 56, LAPACK Working
Note, August 1993.

[9] J. M. Dennis and E. R. Jessup. Applying automated memory analysis
to improve iterative algorithms. SIAM Journal on Scientific Comput-
ing, 29(5):2210–2223, 2007.

[10] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: Programming for hier-
archical parallelism and non-uniform data access. In Proceedings of
the International Workshop on Language Runtimes, OOPSLA, 2004.

[11] K. Ebcioglu, V. Sarkar, T. El-Ghazawi, and J. Urbanic. An exper-
iment in measuring the productivity of three parallel programming
languages. In P-PHEC workshop, held in conjunction with HPCA,
February 2006.

[12] W. C. et al. Introduction to upc and language specification. Technical
report, DA Center for Computing Sciences, 1999.

[13] N. Fang and H. Burkhart. Structured parallel programming using MPI.
In HPCN Europe 1996: Proceedings of the International Conference
and Exhibition on High-Performance Computing and Networking,
pages 840–847, London, UK, 1996. Springer-Verlag.

[14] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing applica-
tion sensitivity to OS interference using kernell-level noise injection.
In Proc. of the 2008 ACM/IEEE Conf. on Cupercomputing, pages 1,12,
2008.

[15] J. R. Gilbert. Predicting structure in sparse matrix computations. SIAM
J. Matrix Anal. Appl, 15:62–79, 1994.

[16] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and
N. Koziris. Understanding the performance of sparse matrix-vector
multiplication. In Proceedings of the 16th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP), pages
283–292, Washington, DC, USA, 2008. IEEE Computer Society.

[17] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich. Improving performance via mini-applications. Tech-
nical Report SAND2009-5574, Sandia National Laboratories, 2009.

[18] L. Hochstein, V. R. Basili, U. Vishkin, and J. Gilbert. A pilot study to
compare programming effort for two parallel programming models. J.
Syst. Softw., 81(11):1920–1930, 2008.

[19] P. Husbands, C. Iancu, and K. Yelick. A performance analysis of the
Berkeley UPC compiler. In Proceedings of the 17th annual inter-
national conference on Supercomputing, ICS ’03, pages 63–73, New
York, NY, USA, 2003. ACM.

[20] P. Jones. Parallel Ocean Program (POP) user guide. Technical Report
LACC 99-18, Los Alamos National Laboratory, March 2003.

[21] E. Lusk and K. Yelick. Languages for high-productivity computing:
the DARPA HPCS Language Project. Parallel Processing Letters,
17(1):89–102, Mar. 2007.

[22] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas,
J. Kepner, J. Mccalpin, D. Bailey, and D. Takahashi. Introduction to
the hpc challenge benchmark suite. Technical report, 2005.

[23] D. Malln, G. Taboada, C. Teijeiro, J. Tourio, B. Fraguela, A. Gmez,
R. Doallo, and J. Mourio. Performance evaluation of mpi, upc and
openmp on multicore architectures. In M. Ropo, J. Westerholm, and
J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and
Message Passing Interface, volume 5759 of Lecture Notes in Com-
puter Science, pages 174–184. Springer Berlin / Heidelberg, 2009.

[24] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, III, and G. Jin. A
new vision for coarray fortran. In Proceedings of the Third Conference
on Partitioned Global Address Space Programing Models, PGAS ’09,
pages 5:1–5:9, New York, NY, USA, 2009. ACM.

[25] R. Nishtala, G. Almasi, and C. Cascaval. Performance without pain
= productivity: data layout and collective communication in UPC. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’08, pages 99–110, New
York, NY, USA, 2008. ACM.

[26] R. W. Numrich and J. Reid. Co-arrays in the next Fortran standard.
SIGPLAN Fortran Forum, 24:4–17, August 2005.

[27] R. Preissl, N. Wichmann, B. Long, J. Shalf, S. Ethier, and A. Koniges.
Multithreaded global address space communication techniques for gy-
rokinetic fusion applications on ultra-scale platforms. In Proceedings
of SC2011, Seattle, WA, November 2011.

[28] A. Stone, J. M. Dennis, and M. M. Strout. The cgpop miniapp: Version
1.0. Technical Report CS-11-103, Colorado State University, 2011.

[29] X. Sui, D. Nguyen, M. Burtscher, and K. Pingali. Parallel graph
partitioning on multicore architectures. In Languages and Compilers
for Parallel Computing (LCPC), 2010.

[30] P. H. Worley and J. Levesque. Proceedings of the 46th cray user
group conference. In The Performance Evolution of the Parallel Ocean
Program on the Cray X1, Knoxville, TN.

[31] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Du-
ell, S. L. Graham, P. Hargrove, P. Hilfinger, P. Husbands, C. Iancu,
A. Kamil, R. Nishtala, J. Su, W. Michael, and T. Wen. Productivity
and performance using partitioned global address space languages. In
Proceedings of the 2007 International Workshop on Parallel Symbolic
Computation, PASCO ’07, pages 24–32, New York, NY, USA, 2007.
ACM.

[32] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: A high-performance Java dialect. In ACM Workshop on
Java for High-Performance Network Computing, pages 10–11, 1998.

