
GSHMEM: A Portable Library for Lightweight,
Shared-Memory, Parallel Programming

Changil Yoon Vikas Aggarwal Vrishali Hajare Alan D. George Max Billingsley III
ECE Department, University of Florida, Gainesville, FL 32611-6200

{yoon, aggarwal, hajare, george, billingsley}@hcs.ufl.edu

Abstract
As parallel computer systems evolve to address the insatiable
need for higher performance in applications from a broad range
of science domains, and exhibit ever deeper and broader levels
of parallelism, the challenge of programming productivity comes
to the forefront. Whereas these systems (and, in some cases,
devices) are often constructed as distributed-memory architectures
to facilitate easier hardware scalability, some researchers and users
believe that programming productivity may be better facilitated
with shared-memory programming models. This dilemma may find
potential solutions with partitioned global-address-space (PGAS)
languages, libraries, and systems. One such PGAS approach is
SHMEM, a lightweight, shared-memory programming library orig-
inally designed for the distributed-memory Cray T3D machine.
With the formation of the OpenSHMEM forum and its upcoming
standard, SHMEM is experiencing a resurgence of interest due
to its inherent balance in simplicity, programmability, and perfor-
mance, supported by features such as one-sided communication,
an explicit notion of data partitioning and affinity, et al. Unfor-
tunately, SHMEM implementations available to date have largely
been proprietary, inconsistent with one another, system-specific,
and thus unable to support code uniformity and portability. This
paper presents the results of our research investigation, reference
design, development, prototyping, and evaluation of a portable
OpenSHMEM library (called GatorSHMEM or GSHMEM) that
achieves good performance on a potentially wide range of systems,
leveraging the GASNet communications middleware from UC
Berkeley and LBNL. We evaluate the portability and performance
of our approach through microbenchmarking and applications
studies on two different systems. Experimental results indicate
that our design achieves performance comparable to a proprietary
implementation of SHMEM over Quadrics and a popular MPI
library (MVAPICH) over InfiniBand.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming-Parallel programming; D.3.2
[Programming Languages]: Language Classifications - Concurrent,
distributed, and parallel language

General Terms Design, Languages, Performance

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PGAS ’11 Galveston, Texas.
Copyright c⃝ 2011 ACM [to be supplied]. . . $10.00

Keywords Parallel programming; programming model; SHMEM;
partitioned global address space; portability

1. Introduction
High-performance computing (HPC) is becoming a critical en-
abling technology as HPC applications lead to advancements in
an ever-broadening range of fields. However, developing such
HPC applications is challenging; developers must craft correct and
efficient parallel programs that can run on today’s complex, highly
parallel systems. The programming model used is a crucial aspect
of HPC-application development, and the family of partitioned,
global-address-space (PGAS) models comprises the current state
of the art in balancing performance and programmability. Notable
members of the PGAS family include Unified Parallel C (UPC) [1],
X10 [2], Chapel [3], Co-Array Fortran (CAF) [4], and Titanium [5].

SHMEM [6] is another member of the PGAS family which
takes the form of a library instead of an entirely new language.
Originally created for use on Cray systems, SHMEM later became
the property of Silicon Graphics Inc. (SGI). The SHMEM library
centers on high-bandwidth, low-latency communication routines
that take the form of one-sidedputandgetoperations; these operate
on symmetricdata which resides in logically shared address space.
Since it was first created, SHMEM has primarily been available by
way of a number of proprietary vendor implementations, notably
including versions from Cray [8], SGI, and Quadrics [7]. Unfor-
tunately these implementations have generally differed to varying
degrees in the API and semantics they provide, making any level
of portability of SHMEM applications—much less the ideal of
performance portability—very difficult to achieve.

Some previous work [9] has made headway towards a portable
SHMEM; GPSHMEM is based on the semantics of Cray SHMEM
and uses the ARMCI (Aggregate Remote Memory Copy Interface)
library [10] in conjunction with MPI. As the possibility of a more
standardized SHMEM library called OpenSHMEM, based on the
API owned and controlled by SGI, looms on the horizon, the need
for a modern design for a portable SHMEM has again surfaced. A
robust design based on the extensive capabilities of the GASNet
[11] communication middleware comprises one promising path
towards portable performance in the SHMEM community. In this
paper, we present the results from our research investigation, refer-
ence design, development, prototyping, and evaluation of a portable
OpenSHMEM library leveraging the GASNet communications
middleware. We evaluate the portability and performance of our
approach through microbenchmarking and applications studies on
two different systems. Experimental results indicate that our design
achieves performance comparable to a proprietary implementation
of SHMEM over Quadrics and a popular MPI library (MVAPICH)
over InfiniBand. Our reference point for the SHMEM API and
semantics is based on our understanding of the V1.0 draft of

the OpenSHMEM specification (shared on March 3, 2011 with
OpenSHMEM mailing list).

The remainder of the paper is organized as follows: Section 2
presents background information on SHMEM and GASNet and
outlines the software architecture of GSHMEM. Section 3 gives
a detailed description of the design of GSHMEM, various routines
in our current prototype along with their performance capabilities.
In Section 4, we present two application case studies that employ
various GSHMEM functions. Finally, Section 5 summarizes the
work with conclusions and directions for future work.

2. Background
Traditionally, developers of parallel programs have performed
coordination between tasks using either message-passing libraries
such as MPI [12] or shared-memory libraries such as OpenMP
[13]. Recently, languages and libraries that present a PGAS to the
programmer, such as UPC [1] and SHMEM [6], have grown in
interest. These languages provide a simple interface for developers
of parallel applications through implicit or explicit one-sided data
transfer functions, while providing comparable performance to
message-passing libraries [15]. In particular, the SHMEM com-
munication library is currently experiencing a growth in interest
in the HPC community through the OpenSHMEM initiative. In
this section, we provide a brief background of SHMEM and the
GASNet communication system which is leveraged by our design
of GSHMEM.

2.1 SHMEM

The SHMEM communication library consists of a set of routines
that allow exchange of data between cooperating parallel processes
(called processing elements or PEs). Programs developed using
SHMEM follow the single-program, multiple-data model (SPMD).
The SHMEM library includes routines to perform operations such
as shared-memory management, data transfers, and synchroniza-
tion. Table 1 presents some of the most important SHMEM func-
tions, categorized according to the type of operation they perform.

SHMEM supports the PGAS model by defining the notion
of symmetric objects, namely those objects (variables or arrays)
which have the same size, type and relative address on all PEs.
Communication amongst PEs happens only by way of data-transfer
operations involving these symmetric objects. Symmetric objects
can be separated into two different categories, those that are
statically allocated and those that are dynamically allocated. The
locations of static variables are assigned at program link time;
this property, combined with the SPMD execution model (and
the practical reality that the same executable will be run on each
PE), ensures that these variables reside at the same virtual address
on each PE. SHMEM’s dynamically allocated symmetric objects
are allocated using a special collective function calledshmalloc(),
which allocates the same amount of memory on each PE (at the
same or different memory location).

2.2 GASNet

The Global-Address Space Networking (GASNet) communication
system is a language-independent, low-level networking layer
developed at U.C. Berkeley and Lawrence Berkeley National
Lab (LBNL). GASNet provides network-independent, high-
performance communication primitives aimed at supporting SPMD
parallel programming models, in particular those in the PGAS
family.

At the highest level, GASNet is divided into two layers, the
GASNet core API and the GASNet extended API. The Core
API is a general interface based on the Active Message (AM)
[16] paradigm and Firehose memory registration algorithm [18]

Table 1. SHMEM functions by category.

implemented directly on top of each network. Active-message-
based communication consists of logically matching request and
reply messages. Each message is sent with a handler index; when
the message is received, the corresponding handler routine is
executed. Handlers and their indexes are registered at the beginning
of a job execution. A request handler is invoked on a given PE
when that PE receives a request message; similarly, a reply handler
is invoked upon receipt of a reply message. Request handlers can
reply to the requesting node at most one time; reply handlers can
neither request nor reply. The GASNet core API also includes
functions to: setup and terminate the execution environment; query
environmental properties (e.g., processor ID, system size, etc.);
send, receive, and execute AMs; and manage locks.

In contrast, the extended API is a network-independent interface
that provides medium- and high-level operations such as blocking-
and non-blocking remote shared-memory operations (put andget)
and barrier-related operations. Whenever possible, the extended
API functions are implemented directly on top of the interconnect
API (and thus generally make use of remote direct-memory access
or RDMA) to maximize performance. For those networks that do
not support RDMA (such as the portable UDP layer), there is a
generic implementation that uses only the GASNet core API.

GASNet currently supports execution on a wide range of net-
works (a.k.a. conduits) such as UDP, MPI, Cray XT Portals,
Myrinet, Quadrics, InfiniBand, IBM BlueGene/P DCMF and IBM
LAPI [14]. Previous work [15] has demonstrated the performance
advantages of GASNet’s one-sided communication model com-
pared to MPI’s two-sided message passing on BlueGene/P. GAS-
Net continues to be actively developed and used as the network
layer for modern programming languages such as Chapel.

3. Design Overview of GSHMEM
Figure 1 shows the software architecture of GSHMEM which
employs GASNet’s Core API and Extended API. While our in-
terface for GSHMEM uses the OpenSHMEM specification as a
reference, we propose few additional routines in this manuscript

Figure 1. Software architecture of GSHMEM atop GASNet.

as suggestions for inclusion in the future specifications. In the
following subsections, we discuss the design of different cat-
egories of OpenSHMEM functions in more detail and present
benchmarking results to compare the performance of GSHMEM
with other libraries. Our current prototype includes all of the
functions commonly required by most SHMEM applications. A
few functions not included in our prototype are discussed in the
final subsection. The results presented in this paper were gathered
from experiments on two different systems. The first system (called
Quadrics cluster) consists of 16 Linux servers connected via a
Quadrics QsNetII interconnect (with a raw link bandwidth of
10Gb/s); each server is comprised of a 2-GHz AMD Opteron
246 processor with 1GB of memory. The second system is an
InfiniBand (or IB) cluster and is comprised of 16 servers, each
equipped with a quad-core Xeon E5520, 2.26-GHz processor
with 6GB of memory. These servers are connected via a DDR-
InfiniBand interconnect (offering a raw link bandwidth of 20Gb/s).

3.1 Memory Model

To provide PGAS abstraction in SHMEM, our design relies on
the notion and properties of GASNet’s shared-memory segments.
The GASNet shared segment is an area of memory allocated
on each PE (i.e., on each GASNet thread); all remote memory
addresses used in GASNet operations must fall within the shared
segment. The shared segment is obtained at program startup via
the gasnetattach() routine. On parallel multicore systems where
each node is comprised of multiple processor cores, each processor
core can be configured as an independent PE with a separate shared
memory segment. The global address space in such a system is
comprised of the shared segments corresponding to various PEs
within and across multiple nodes as shown in Figure 2.

Communication among processes on the same node is achieved
through GASNet’s inter-Process SHared Memory (PSHM) design,
which provides three mechanisms namely SystemV shared mem-
ory, POSIX shared memory and memory-mapped (usingmmap())
disk files. GASNET configured with POSIX shared memory over
IB restricted the maximum amount of symmetric space available
on each PE (multiple of which were mapped on a single node) to
a small size. The mechanism using memory-mapped disk files can
lead to significant performance degradation on some systems. As
a result, we employed the SystemV shared-memory mechanism of
PSHM (more details can be found at [19]) to enable support for
intra-process communication in GSHMEM. Additionally, GASNet
provides various modes for configurations of the shared-memory
segment. Our design is based on the use of a configuration in
which the segments are aligned at the same virtual address on
all PEs (i.e., GASNETALIGNED SEGMENTS). Note that our

Figure 2. Distribution of global address space in parallel multicore
systems.

design does not require the GASNETSEGMENTEVERYTHING
configuration, which makes the entire memory space of each PE
available for remote access instead of a specific shared segment.
In addition, PSHM design (on which GSHMEM relies for intra-
node communication) provided by GASNET are disabled for
the configuration with GASNETSEGMENTEVERYTHING. By
contrast, with GASNETSEGMENTFAST configuration, GAS-
NET supports both shared segment as well as PSHM design. Due
to the factors listed in this section, our design for GSHMEM uses
GASNET SEGMENTFAST.

Dynamic symmetric objects employed by SHMEM applications
are allocated directly within the GASNet shared segment. Our
design currently leverages a memory management technique and
implementation described in [20] for performingshmalloc()and
shfree()operations on the shared segment obtained from GASNet.
For static symmetric objects, we employ GASNet active messages
in combination with a special portion of the GASNet shared
segment reserved for internal buffers in GSHMEM. Further details
of this technique will be presented in our discussion of the relevant
data-transfer operations.

3.2 Point-to-Point Data-Transfer Operations

The set of point-to-point data-transfer operations in OpenSHMEM
consists of elemental, bulk, and stridedput and get operations.
The elementalput and get functions operate on single-element
symmetric objects such as short, integer, etc. The bulkput and
get functions transfer a contiguous data block in the form of an
array. The strided versions of the data-transfer routines operate on
arrays in which the data to be transferred follows a certain pattern
based on strides between consecutive elements of the source and
target arrays. OpenSHMEM semantics dictate that allput routines
are non-blocking, i.e. they return as soon as the source data buffer
can be reused, while allget routines are blocking, i.e. they do not
return until the resulting data can be accessed on the calling PE.

In the following subsections, we discuss the transfers involving
dynamically allocated symmetric objects and static symmetric
objects separately. These cases differ in terms of their design,
performance and the GASNet functionality used by each.

3.2.1 Dynamically Allocated Symmetric Objects

Because dynamically allocated symmetric objects always reside
within the GASNet shared segment,put andget routines in GSH-
MEM that operate on such objects can be based directly on the
GASNet’s extended API. While there are several choices available
for performing get and put operations in GASNet’s extended
API (such as blocking, non-blocking, memory-aligned access,
etc.), we employed the routines that offered the best performance
while conforming to the requirements imposed by OpenSHMEM
semantics. For elemental and bulkget operations, our design uses
gasnetget bulk() routine. Elemental and bulkput operations make
use ofgasnetput nbi, which allows us to provide the appropriate
(non-blocking) semantics. For strided operations, we employ the
indexed routines in GASNet, namelygasnetputi nbi bulk and

Figure 3. Bandwidth comparison of GSHMEM with other libraries for (a)getoperation on Quadrics cluster; (b)put operation on Quadrics
cluster; (c)getandput operations on IB cluster.

gasnetgeti bulk. However, the semantics ofgasnetputi nbi bulk
operation are different than that required by OpenSHMEM, as
the former does not allow the reuse of source buffer upon return
of control to the calling program. As a result, we modified the
implementation ofgasnetputi nbi bulk to provide the desired
functionality. An alternate approach for supporting the strided
operations can be to employ active messages for accomplishing
the transfers. However, such a design based on active messages
will require additional memory-copy operations which will lead
to performance degradation. More functions to support strided
transfers in GASNet in future may help overcome this issue.

To evaluate our design, we compared bandwidth obtained by
GSHMEM with several communication libraries on both of the
experimental systems (Quadrics and IB clusters). Figure 3a com-
pares the bandwidth obtained byget operation in GSHMEM with
that of aget operations in GASNet (v1.16.1), Quadrics SHMEM
(v1.21.2.5) (hereafter referred to as QSHMEM), and Berkeley UPC
(v2.12.1)[21] (from UC Berkeley and LBNL, labeled in the figure
as BUPC) on the Quadrics cluster. In all of our experiments, we
employ the same benchmark code to record the performance of
QSHMEM and GSHMEM. In the case of BUPC, the numbers
correspond to the bandwidth obtained by amemcpyoperation be-
tween two shared objects. It can be seen that all the communication
libraries offered similar bandwidth over a wide range of data sizes.

Figure 3b shows a similar comparison for theput operation.
In the case of GSHMEM, GASNet, and QSHMEM, the measured
bandwidth corresponds to a non-blockingput operation followed
by a communication synchronization call used to ensure transfer
completion. While all communication libraries attained similar
bandwidth for data sizes up to approximately 256 bytes, both the
GSHMEM put operation and GASNet’sput have lower bandwidth
for data sizes between 256 bytes and 2MB. To find possible
reasons for this observed discrepancy, we explored the design and
implementation of the corresponding GASNetput operation on the
Quadrics cluster (i.e., for the Quadrics ELAN conduit). We found
that for data sizes up to 64 bytes, theput operation is implemented
by directly calling an ELANput operation. However, for data
sizes between 64 bytes and 1MB, the GASNetput implementation
performs an explicit copy from the source buffer into an ELAN
bounce buffer (from which the network will presumably later
perform an RDMA-based transfer). For data sizes over 1MB, the
GASNetput operation directly employs active messages. Based on
these observations, we surmise that the copy operation being used
for the intermediate data sizes leads to the observed performance
discrepancy. Future work will explore possible avenues for miti-
gating this issue for our design of the GSHMEMput operation.

Figure 3c compares the performance ofget andput operations
in GSHMEM with corresponding operations in GASNet on the
IB cluster. Due to the lack of a SHMEM implementation over

Figure 4. Bandwidth comparison of intra-nodeput and get
transfers on IB cluster with similar transfers using MVAPICH.

InfiniBand, we also compare GSHMEM with MVAPICH2 (v1.4.1)
(a popular implementation of MPI over InfiniBand) [17]. Note that
we employ the one-sided MPI operations such asMPI Get and
MPI Put in combination withMPI Win fencein our experiments
on IB cluster, in order to make a fair comparison with other one-
sided communication libraries. As with the Quadrics cluster, the IB
cluster shows little observable difference in performance between
GSHMEM and GASNet, suggesting that GSHMEM has small
overhead regardless of the execution platform. Additionally, on the
IB cluster, GSHMEMput and get operations outperform MVA-
PICH across all measured data sizes above 256 Bytes (all libraries
are comparable below this range). Figure 4 compares the bandwidth
obtained by GSHMEM and MVAPICH for data transfers between
two processor cores within a single node. The figure indicates that
GSHMEM is capable of offering much superior performance for
intra-node transfers by employing the GASNet’s PSHM design.

3.2.2 Statically Allocated Symmetric Objects

Since static symmetric objects are not allocated within the GASNet
shared segment, the extended API of GASNet cannot be directly
employed for these objects. Instead, GSHMEM uses active mes-
sages to perform remote transfers to static symmetric objects. We
illustrate our design by considering the example of bulk transfer
routines shmemgetmem()and shmemputmem(), for which we
make use of GASNet long active messages. Since long active
messages perform data transfers only within GASNet’s shared
segment, our design reserves a portion of the GASNet shared
segment as internal buffers during initialization. The size of this
buffer is user-configurable, with a default size of 64MB in our
current implementation.

Figure 5. Sequence of steps forshmemgetmem()routine involv-
ing statically allocated data.

Figure 6. Sequence of steps forshmemputmem()routine involv-
ing statically allocated data.

Figure 5 illustrates the message flow in our design when aget
operation is invoked on PE X to transfer a static symmetric object
residing on a remote PE Y. The following is a simple description of
this message flow:

1. PE X first initializes the flag to 1, and then invokesgas-
net AMRequestShortM()to send the address of source buffer
to PE Y. PE X then waits until the value of the flag becomes 0
before returning control to the application program.

2. After receiving the request, PE Y executes the associ-
ated request handler, which in turn ultimately callsgas-
net AMReplyLongM()to send requested the data from the
source address on PE Y.

3. Upon receiving the reply message, PE X executes its reply
handler, which copies the data into the destination address and
then sets the value of the flag to 0. At this point,shmemgetmem
returns control to the application program on PE X.

Unlike thegetoperation, theput operation is non-blocking and
returns before the data transfer is completed. To accomplish this
capability, we employ an internal buffer on the destination PE to
store the data temporarily. Figure 6 shows the message flow for a
put function called on PE X where the destination is a statically
allocated symmetric object residing on remote PE Y. This message
flow is as follows:

1. PE X sends agasnetAMRequestShortM()to request the loca-
tion of the available buffer on PE Y and waits for a response.

Figure 7. Bandwidth comparison between QSHMEM and GSH-
MEM for data transfers using statically and dynamically allocated
symmetric objects on Quadrics cluster.

2. The request handler on PE Y, responds with the address of the
next available buffer space through agasnetAMReplyShortM().

3. PE X invokesgasnetAMRequestLongM()to transfer the data
(to the temporary buffer on PE Y) and send the destination
address to PE Y. Additionally, PE X increments itscount of
outstandingput operations and returns control to the caller
immediately.count is used by synchronization routines in our
design to check for any incomplete put operations.

4. Upon receiving the message containing the data, PE Y calls
the associated request handler which copies the data into
the destination address. As the last step within the request
handler, PE Y callsgasnetAMReplyShortM()to indicate that
the completion of transfer.

5. On receiving the reply, PE X executes the corresponding reply
handler, which decrements the count of outstandingput opera-
tions.

Figure 7 shows the bandwidth of QSHMEM and GSHMEM
when transferring data between two PEs using dynamically allo-
cated symmetric objects (thedynamic-to-dynamiccase) and using
statically allocated symmetric objects (thestatic-to-staticcase).
While in the dynamic-to-dynamic case GSHMEM and QSH-
MEM offer comparable performance, for the static-to-static case
GSHMEM offers lower bandwidth compared to QSHMEM. This
discrepancy can be explained based on our current GSHMEM
design (and prototype), which uses an explicitmemcpycall to
copy data from the remote shared segment to the remote static-
memory location (i.e., step 2 ofshmemgetmem()discussed in
Section 3.2.2). While this copy operation is necessary in the current
design, future work will explore possibilities for solving or at least
mitigating this issue.

3.3 Collective Communication

The OpenSHMEM library provides a set of collective routines in-
cluding broadcast, collect and reduce operations. These operations
can be either performed on all the PEs in an application or amongst
a specific subset of PEs called an active set defined by a triplet:
starting PE, stride and size of the active set. Each of these collective
operations can be internally mapped to one or more collective
operations recently supported in GASNet’s extended API.

For OpenSHMEM’sbroadcastroutine, our design usesgas-
net coll broadcast. Similarly, fcollect function is built on top of
GASNet’sgasnetcoll gatherall routine. While OpenSHMEM se-
mantics require that the result of a reduce operation be available

Figure 8. Latency comparison of GSHMEM with various communication libraries on Quadrics cluster for (a)broadcastoperation; (b)
fcollectoperation. Experiments involved eight nodes exchanging data.

on all the participating PEs, the reduction operation in GASNet
(gasnetcoll reduce) updates the result on the root PE only. As
a result, our design performs a subsequent broadcast operation
to broadcast the reduced data to all the PEs at completion of
gasnetcoll reduce.

For defining an active set for any collective operation, we
employ GASNet’s notion of teams. A team in GASNet is defined by
a team handle, and is created usinggasnetecoll teamcreate. Once
a team is created, the corresponding team handle can be employed
by GASNet collective routines to perform communication between
the PEs participating in that team. To minimize the overhead of
repeatedly creating teams, our design caches the most recently-
used team handle. Our performance benchmarking indicated that
such caching can significantly reduce latency, and can be beneficial
when collective operations are called repeatedly with same active
set (a common occurrence in SHMEM applications).

To further optimize the performance of collective operations
in OpenSHMEM, we (optionally) employ GASNet’s auto-tuning
infrastructure for collectives. When enabled, this feature initiates
a search for an optimal algorithm for executing a given collec-
tive operation (defined by the routine and its associated param-
eters). Environment variablesGASNETCOLL ENABLESEARCH
andGASNETCOLL TUNING FILE are used to control the behav-
ior of auto-tuning framework in GASNet. We observed substantial
improvement in the performance of collective operations by em-
ploying auto-tuning during our experiments, especially for large
data transfers.

Figure 8 compares the latencies ofbroadcast and fcollect
operations in GSHMEM with equivalent operations in QSHMEM,
GASNet, and Berkeley UPC on the Quadrics cluster. For collective
operations, we also compare the performance of GSHMEM with
that of corresponding operations in an implementation of MPI from
Quadrics (v1.2.4) running on top of the Quadrics network API,
labeled QMPI in the figure. The results presented in the figure for
GSHMEM, GASNet and BUPC correspond to the performance
obtained by enabling the auto-tuning infrastructure of GASNet.
For broadcastoperation (Figure 8a), GSHMEM continues to of-
fer very little overhead on top of GASNet. However, the three
communication libraries (i.e. GSHMEM, BUPC, and GASNet)
that employ GASNet functionality offer lower performance com-
pared to vendor-specific libraries from Quadrics (i.e. QSHMEM
and QMPI). After further investigation, we determined that the
broadcast operation in QSHMEM uses highly-optimized hardware
broadcast primitives when the operation involves a contiguous set
of PEs. Forfcollect operation (Figure 8b), the performance of
GSHMEM compares favorably to that of QSHMEM for message

sizes greater than 2KB, while still incurring minimal overhead on
top of GASNet.

We also compared the performance of GSHMEM and QSH-
MEM for collective operations performed on a subset of PEs
in a SHMEM application. For such team-based operations, both
broadcastandfcollect in GSHMEM were able to outperform their
counterparts in QSHMEM for large message sizes as shown in
Figure 9a. For smaller messages, the overhead incurred by GASNet
in handling team-based collectives and GSHMEM for creation of a
new team through GASNet led to lower performance compared to
QSHMEM.

Although the draft OpenSHMEM specification does not provide
scatter and gather functions currently, we have included these
functions in our interface of GSHMEM. We believe these functions
can potentially improve performance and productivity (in certain
cases) for some applications. Consider the case offcollectoperation
in OpenSHMEM, which requires that the resultant (collected) data
be available on all the PEs in an active set. Several applications
only require the resulting data to be available on one of the
PEs, and ashmemgather (if supported) will provide the desired
functionality. Employing afcollectoperation in such a case can lead
to unnecessary data transfers, yielding sub-optimal performance.
To provide application developers with more flexibility, we provide
scatterandgatherfunctionality in GSHMEM. These functions are
directly built on top of their counterparts available in GASNet.
Figure 9b compares the latency of scatter operation in GSHMEM
with corresponding operations in GASNet, BUPC and QMPI. All
the communication libraries offer similar performance over a wide
range of data sizes.

3.4 Synchronization

The synchronization routines provided by OpenSHMEM can
be grouped into three categories: communication synchroniza-
tion, barrier synchronization, and point-to-point synchronization
(through wait-on-value-change operations). In the following
subsections we describe our design for each of these categories
of synchronization routines.

3.4.1 Communication Synchronization

Sinceput operations in OpenSHMEM are non-blocking, program-
mers need a way to ensure completion of outstandingput opera-
tions and to establish ordering of multipleputs. For this purpose,
OpenSHMEM provides theshmemquiet()andshmemfence()rou-
tines.shmemquiet() blocks the program execution for the calling
PE until all outstandingput operations (to any PE) are completed.
shmemfence()operation is employed to guarantee the ordering

Figure 9. Latency comparison of GSHMEM with various communication libraries on Quadrics cluster for (a) team-based collective
operations; (b)scatteroperation. Experiments involved eight nodes exchanging data. For team-based operations, four out of eight nodes
were chosen using startPE=0, stride=1, size=4.

of put operations to a particular PE. In this section, we address
the design ofshmemquiet() in GSHMEM. Our current design of
shmemfence()simply provides the same (stronger) semantics of
shmemquiet(). A more refined design for the fence operation is
left for future work (though we have a sketch of this design already
completed).

As described in Section 3.2.1, our design forput operations
involving dynamically allocated symmetric objects is based on
a GASNet extended API routine which uses an implicit han-
dler. Thus, our corresponding design forshmemquiet() usesgas-
net wait syncnbiputs(), which waits until all the GASNetput
operations issued by the calling PE are completed. To ensure
that shmemquiet() also waits for completion ofput operations to
statically allocated symmetric objects, we make use of the counter
mentioned in Section 3.2.2. Ourshmemquiet()simply ensures that
this counter is zero, indicating that noput operations to static
objects on remote PEs are outstanding.

3.4.2 Barrier Synchronization

The OpenSHMEM library provides two types of barrier synchro-
nization routines,shmembarrier all() andshmembarrier(). While
the first of these functions,shmembarrier all(), performs a barrier
operation on all of the PEs in the application,shmembarrier()
routine performs a barrier operation for a subset of PEs in an active
set (specified by a triplet: start PE, stride, and the size of the active
set).

Our design ofshmembarrier all() makes use of the split-phase
barrier routines provided by GASNet, namelygasnetbarrier notify()
and gasnetbarrier wait(). By invoking the wait operation im-
mediately after thenotify on each PE, we obtain the collective,
single-phase barrier behavior needed forshmembarrier all().
For performing a barrier operation on a subset of the PEs
using shmembarrier(), we define a GASNet team as described
in Section 3.3, and then employ team-based GASNet rou-
tines for notify (gasnetecoll teambarriernotify) and wait (gas-
netecoll teambarrierwait).

3.4.3 Point-to-Point Synchronization

The SHMEM library provides two functions for synchroniza-
tion between two PEs,shmemwait and shmemwait until. The
shmemwait routine blocks until the specified variable is changed to
a value other than a specified value by a remote PE. Thewait until
functions does not return until the given comparison statement
(comprised of a symmetric object, a value, and a comparison
operator) is satisfied by a change from a remote PE.

Our design of theshmemwait andshmemwait until routines
for statically allocated symmetric objects makes use of the GAS-
Net function calledGASNETBLOCKUNTIL(), which waits (busy
polling for active messages) until a given condition becomes true
by way of some incoming active message. Since transfers to
dynamically allocated symmetric objects do not employ active
messages in our design, we use explicit polling forwait operations
involving dynamic objects. Such polling is achieved in GSHMEM
by invoking a local GASNetgetoperation to ensure that we see any
changes to the applicable symmetric object.

3.5 Setup and Environment-Query Operations

The GSHMEM library provides a function for initialization
(start pes()) of execution environment. This function internally
performs all the necessary tasks to initialize the operation of
GASNet. While not present in the OpenSHMEM specification,
we also include a corresponding routine (shmemfinalize()) for
termination. We believe that such a routine can be beneficial for
ensuring a clean exit for SHMEM applications, performing house-
keeping activities (such as the ones require by GASNet’s auto-
tuning feature), and a capability important to support performance-
analysis tools for the OpenSHMEM library.

OpenSHMEM additionally provides environment query func-
tions, including my pe(), which simply returns the PE identifier
for the calling PE, andnumpes(), which returns the total num-
ber of PEs. Our design for these routines simply makes use of
corresponding GASNet functionality, namelygasnetmynode()and
gasnetnodes().

3.6 Open Issues

The OpenSHMEM specification includes routines to perform
atomic read-and-update operations (e.g., fetch-and-increment)
on symmetric data objects. We have a preliminary design for
such operations which exploits the atomicity of active-message
handlers. Due to the lack of clear semantics and disparity between
potential choices for such operations, GSHMEM does not include
a detailed design for such operations currently. Additionally, the
OpenSHMEM library provides a set of miscellaneous functions
for purposes such as cache management and address manipulation,
which we plan to investigate in future.

4. Application Case Studies
In this section, we demonstrate the portability and performance
of GSHMEM by way of two application case studies which we

Figure 10. (a) Execution time of CBIR application using QSHMEM and GSHMEM on Quadrics and IB clusters;(b) Execution time of
CBIR applications with 8 PEs using different processor assignments. For all experiments, our search database consisted of 22,000 images,
each of size128× 128 pixels of 8 bits.

developed to conduct our experiments. These studies illustrate
various functionalities of GSHMEM such as the use of GSHMEM
routines for transfers between PEs mapped on processors on
the same node or different nodes, as well as comparison of
different routines in GSHMEM when performing certain types
of transfers. Additionally, we compare the performance of an
application developed using GSHMEM with that of QSHMEM
and demonstrate the ability of GSHMEM to provide portable
performance by running the same application on two distinct
systems (Quadrics cluster and IB cluster). Due to lack of available
SHMEM applications, our experiments have been limited to two
case studies. We plan to expand our set of application case studies
in future.

4.1 Content-based Image Retrieval (CBIR)

The first application we considered is a SHMEM implementation
of Content-Based Image Retrieval (CBIR), which refers to the
efficient search of multimedia databases based on the semantics of
the data. The images in the database are characterized by a feature
vector later used for retrieval of relevant images. For this case study,
we employed a color-feature-extraction CBIR program developed
based on the auto-correlogram discussed in [22].

The execution time of the application on the Quadrics cluster
using both GSHMEM and QSHMEM is shown in Figure 10a.
The figure also shows the execution time of the application using
GSHMEM on the IB cluster. The graph indicates that GSHMEM
is capable of providing application performance similar to that
offered by a vendor-provided, system-specific SHMEM on a cluster
with a proprietary interconnect (QSHMEM over Quadrics in our
experiments). Additionally, GSHMEM allows applications to be
immediately ported to another cluster with an unrelated intercon-
nect technology as demonstrated by the ease with which we were
able to run the same CBIR application on the IB cluster.

To analyze the ability of GSHMEM to transfer data between
PEs mapped on processors within a node, we conducted exper-
iments using the CBIR application with eight PEs on the IB
cluster which consists of quad-core processors on each node.
Figure 10b shows the execution time of the application under
different mapping scenarios. The labels for different bars in the
graph indicate the number of nodes employed in an experiment×
the number of PEs mapped on each node. GSHMEM allows the
application developers to express communication between different
processor cores within a node and across multiple nodes using a
uniform interface. The first three cases (8×1, 4×2 and 2×4) offer
similar performance. Due to the small amount of communication

involved in the CBIR application (compared to computation time),
higher bandwidth of intra-node transfers does not lead to any
performance improvement by mapping more PEs on the same node.
For the case of 1×8 mapping (last bar in the graph), two PEs time-
share the resources of each processor core (through Intel’s Hyper-
Threading technology), which results in a higher computation time
for the application. This study illustrates the ease with which
GSHMEM applications can be executed on various processors
cores in a cluster of multicore processors.

4.2 Two-dimensional FFT

As our next case study, a parallel, two-dimensional FFT was chosen
because of a more complex communication pattern which can be
provided in multiple ways using different SHMEM routines. A
2-D FFT operation on an image is performed by decomposing it
into a series of 1-D FFT over the rows of the image, followed
by a series of Fourier transforms over the columns. A typical
parallel implementation of 2-D FFT distributes rows of the input
image across the computational nodes which perform a 1-D FFT
over their assigned subset of rows. A corner-turn (distributed
transpose), which involves all-to-all communication between the
processing nodes, is required to re-distribute the data across all
the nodes. The nodes then compute 1-D FFT over the columns
of the image. Another corner turn is required to re-organize the
data and recover the transformed output image. In our experiments,
we employed GSHMEM routines to perform the corner-turn in
three different ways: (a) using ashmemfcollectoperation, (b) using
a shmemgather operation, and (c) using ashmemget operation
multiple times to receive data from every PE.

Figure 11 shows the execution time of 2-D FFT for three
different implementations using GSHMEM (Figure 11a) and QSH-
MEM (Figure 11b) on the Quadrics cluster. The results indicate
that GSHMEM offers application performance comparable to that
of QSHMEM for the approach usingget operation and much
better performance than QSHMEM for the approach usingfcollect
operation (this is because the performance offcollect operation
in GSHMEM was shown to be better than QSHMEM in Figure
8b). Additionally, this study illustrates the benefits of including a
shmemgather routine in the OpenSHMEM specification. For this
particular application which requires resultant data to be copied on
only one PE, afcollectoperation leads to unnecessary data transfers
compared to agatheroperation, it exhibits poor performance and
scaling behavior when compared to the latter. Interestingly, the
implementation using agetoperation offered the best performance
in our experiments. By virtue of being a non-collective operation,

Figure 11. Execution time of two-dimensional FFT implemented on Quadrics cluster (a)using different GSHMEM functions; (b) using
different QSHMEM functions.

the get operation allows each PE to essentially perform a gather
operation in parallel with a similar operation on other PEs.

5. Conclusions and Future Work
As parallel systems evolve towards large clusters of multicore and
manycore processors, communication libraries that are capable of
offering high-performance, portability and programming simplicity
will become essential. To address this need, we have presented our
design for a portable, high-performance SHMEM library atop the
GASNet system. The substantial portability which can be achieved
with the GASNet layer, combined with the available performance
on the wide range of networks for which optimized GASNet
support is available, make GASNet particularly amenable for a
modern, portable SHMEM design and implementation.

Our current GSHMEM reference design and prototype provides
the core set of OpenSHMEM API functionality. We demonstrated
the portability and performance of GSHMEM through microbench-
marks and two case studies on two distinct systems with different
interconnect technologies. We have also shown the performance of
GSHMEM to be comparable with the performance of the vendor
Quadrics SHMEM implementation in most cases.

Future work on GSHMEM will focus on completing all remain-
ing design considerations to support the complete OpenSHMEM
API as mentioned in Section 3.6. We also plan to further explore
and optimize the performance of our design, as well as improve
the usability and robustness of our prototype to yield a more
complete software system. Finally, we plan to provide support
for performance analysis of GSHMEM applications, in particular
using our own Parallel Performance Wizard (PPW) tool [23].

Acknowledgments
This work was supported in part by the U.S. Department of Defense
and Lawrence Berkeley National Lab.

References
[1] Carlson, W.W., Draper. J.M., Culler, D.E., Yelick, K., Brooks, E. and

Warren, K.Introduction to UPC and language specification.University
of California-Berkeley. Technical Report: CCS-TR-99-157, 1999.

[2] Murthy, P. Parallel computing with x10.In Proceedings of the 1st
international Workshop on Multicore Software Engineering(Leipzig,
Germany, May 11 - 11, 2008).IWMSE ’08. ACM, New York, NY, 5-6.

[3] Chapel parallel programming language. http://chapel.cray.com/.

[4] Numrich, R. W. and Reid, J. 1998.Co-array Fortran for parallel
programming. SIGPLAN Fortran Forum 17, 2 (Aug. 1998).

[5] Titanium: A high-performance Java dialect.
http://titanium.cs.berkeley.edu/.

[6] SHMEM API for parallel programming. http://www.shmem.org/.

[7] Quadrics Ltd.Quadrics SHMEM programming manual. 2006.

[8] Cray, Inc.Man Page Collection: Shared Memory Access (SHMEM).
(S-2383-23).

[9] Parzyszek, K. 2003Generalized Portable Shmem Library for
High Performance Computing.Doctoral Thesis. UMI Order Number:
AAI3105098., Iowa State University.

[10] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. Panda.High
Performance Remote Memory Access Comunications: The ARMCI
Approach. International Journal of High Performance Computing and
Applications, Vol 20(2), 233-253p, 2006.

[11] Dan Bonachea.GASNet Specification v1.1. UC Berkeley Computer
Science Division Report CSD-02- 1207, 2002.

[12] MPI Standard. http://www.mcs.anl.gov/research/projects/mpi/.

[13] The OpenMP API specification for parallel programming.
http://openmp.org/wp/.

[14] GASNet communication layer. http://gasnet.cs.berkeley.edu/

[15] Nishtala, P. Hargrove, D. Bonachea, K. Yelick.Scaling
Communication-Intensive Applications on BlueGene/P Using One-Sided
Communication and Overlap, 23rd International Parallel & Distributed
Processing Symposium (IPDPS), 2009.

[16] T. von Eicken: Active Messages:An Efficient Communication
Architecture for Multiprocessors, Ph.D. thesis at University of California
at Berkeley(1993).

[17] W.Jiang, J. Liu, H.Jin, D.Panda, W.Groop, R.ThakurHigh
Performance MPI-2 One-Sided Communication over InfiniBand. In
Proceedings of the 4th IEEE/ACM Int’l Symposium on Cluster
Computing and the Grid (CCGrid 2004), April 2004.

[18] C. Bell and R. NishtalaFirehose: An Algorithm for
Distributed Page Registration On Clusters of SMPs, May 2004.
http://gasnet.cs.berkeley.edu/bell-nishtala–firehose-smp.pdf.

[19] GASNet inter-Process SHared Memory (PSHM) design.
http://gasnet.cs.berkeley.edu/dist/docs/pshm-design.txt

[20] B. W. Kernighan and D. M. Ritchie.The C Programming Language
(Second Edition). Prentice Hall.

[21] Berkeley UPC - Unified Parallel C. http://upc.lbl.gov/

[22] Huang, J., Kumar, S. R., Mitra, M., Zhu, W., and Zabih, R. 1997.
Image Indexing Using Color Correlograms. In Proceedings of the 1997
Conference on Computer Vision and Pattern Recognition (CVPR’97)
(June 17 - 19, 1997).CVPR.IEEE Computer Society, Washington, DC,
762.

[23] H. Su, M. Billingsley, and A. George,Parallel Performance
Wizard: A Performance Analysis Tool for Partitioned Global-Address-
Space Programming, 9th IEEE International Workshop on Parallel &
Distributed Scientific and Engineering Computing (PDSEC) ofIPDPS
2008, Miami, FL, Apr. 14-15, 2008.

